Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;103(2-3):124-34.
doi: 10.1016/j.eplepsyres.2012.07.013. Epub 2012 Jul 31.

Real-time detection of epileptic seizures in animal models using reservoir computing

Affiliations
Free article

Real-time detection of epileptic seizures in animal models using reservoir computing

Pieter Buteneers et al. Epilepsy Res. 2013 Feb.
Free article

Abstract

In recent years, an increasing number of studies have investigated the effects of closed-loop anti-epileptic treatments. Most of the current research still is very labour intensive: real-time treatment is manually triggered and conclusions can only be drawn after multiple days of manual review and annotation of the electroencephalogram (EEG). In this paper we propose a technique based on reservoir computing (RC) to automatically and in real-time detect epileptic seizures in the intra-cranial EEG (iEEG) of epileptic rats in order to immediately trigger seizure treatment. The performance of the system is evaluated in two different seizure types: absence seizures from genetic absence epilepsy rats from Strasbourg (GAERS) and limbic seizures from post status epilepticus (PSE) rats. The dataset consists of 452 hours iEEG from 23 GAERS and 2083 hours iEEG from 22 PSE rats. In the default set-up the system detects 0.09 and 0.13 false positives per seizure and misses 0.07 and 0.005 events per seizure for GAERS and PSE rats respectively. It achieves an average detection delay below 1s in GAERS and less than 10s in the PSE data. This detection delay and the number of missed seizures can be further decreased when a higher false positive rate is allowed. Our method outperforms state-of-the-art detection techniques and only a few parameters require optimization on a limited training set. It is therefore suited for automatic seizure detection based on iEEG and may serve as a useful tool for epilepsy researchers. The technique avoids the time-consuming manual review and annotation of EEG and can be incorporated in a closed-loop treatment strategy.

PubMed Disclaimer