Physical basis for the adaptive flexibility of Bacillus spore coats
- PMID: 22859568
- PMCID: PMC3479929
- DOI: 10.1098/rsif.2012.0470
Physical basis for the adaptive flexibility of Bacillus spore coats
Abstract
Bacillus spores are highly resistant dormant cells formed in response to starvation. The spore is surrounded by a structurally complex protein shell, the coat, which protects the genetic material. In spite of its dormancy, once nutrient is available (or an appropriate physical stimulus is provided) the spore is able to resume metabolic activity and return to vegetative growth, a process requiring the coat to be shed. Spores dynamically expand and contract in response to humidity, demanding that the coat be flexible. Despite the coat's critical biological functions, essentially nothing is known about the design principles that allow the coat to be tough but also flexible and, when metabolic activity resumes, to be efficiently shed. Here, we investigated the hypothesis that these apparently incompatible characteristics derive from an adaptive mechanical response of the coat. We generated a mechanical model predicting the emergence and dynamics of the folding patterns uniformly seen in Bacillus spore coats. According to this model, spores carefully harness mechanical instabilities to fold into a wrinkled pattern during sporulation. Owing to the inherent nonlinearity in their formation, these wrinkles persist during dormancy and allow the spore to accommodate changes in volume without compromising structural and biochemical integrity. This characteristic of the spore and its coat may inspire design of adaptive materials.
Figures



Similar articles
-
Constructing fluorogenic Bacillus spores (F-spores) via hydrophobic decoration of coat proteins.PLoS One. 2010 Feb 19;5(2):e9283. doi: 10.1371/journal.pone.0009283. PLoS One. 2010. PMID: 20174569 Free PMC article.
-
The Bacillus subtilis spore coat protein interaction network.Mol Microbiol. 2006 Jan;59(2):487-502. doi: 10.1111/j.1365-2958.2005.04968.x. Mol Microbiol. 2006. PMID: 16390444
-
Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.Appl Environ Microbiol. 2015 Oct 23;82(1):232-43. doi: 10.1128/AEM.02626-15. Print 2016 Jan 1. Appl Environ Microbiol. 2015. PMID: 26497467 Free PMC article.
-
Bacillus subtilis spore coat.Microbiol Mol Biol Rev. 1999 Mar;63(1):1-20. doi: 10.1128/MMBR.63.1.1-20.1999. Microbiol Mol Biol Rev. 1999. PMID: 10066829 Free PMC article. Review.
-
Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.FEMS Microbiol Rev. 2018 Sep 1;42(5):614-626. doi: 10.1093/femsre/fuy021. FEMS Microbiol Rev. 2018. PMID: 29788151 Review.
Cited by
-
Resilient living materials built by printing bacterial spores.Nat Chem Biol. 2020 Feb;16(2):126-133. doi: 10.1038/s41589-019-0412-5. Epub 2019 Dec 2. Nat Chem Biol. 2020. PMID: 31792444
-
Elucidating Antibiotic Permeation through the Escherichia coli Outer Membrane: Insights from Molecular Dynamics.J Chem Inf Model. 2024 Nov 11;64(21):8310-8321. doi: 10.1021/acs.jcim.4c01249. Epub 2024 Oct 31. J Chem Inf Model. 2024. PMID: 39480067 Free PMC article.
-
Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation.Front Microbiol. 2021 Mar 9;12:630573. doi: 10.3389/fmicb.2021.630573. eCollection 2021. Front Microbiol. 2021. PMID: 33767680 Free PMC article. Review.
-
Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials.Synth Syst Biotechnol. 2021 Jul 26;6(3):180-191. doi: 10.1016/j.synbio.2021.07.002. eCollection 2021 Sep. Synth Syst Biotechnol. 2021. PMID: 34401544 Free PMC article. Review.
-
Hydration solids.Nature. 2023 Jul;619(7970):500-505. doi: 10.1038/s41586-023-06144-y. Epub 2023 Jun 7. Nature. 2023. PMID: 37286609 Free PMC article.
References
-
- Nicholson W. L., Munakata N., Horneck G., Melosh H. J., Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–57210.1128/MMBR.64.3.548-572.2000 (doi:10.1128/MMBR.64.3.548-572.2000) - DOI - DOI - PMC - PubMed
-
- Traag B. A., et al. 2010. Do mycobacteria produce endospores? Proc. Natl Acad. Sci. USA 107, 878–88110.1073/pnas.0911299107 (doi:10.1073/pnas.0911299107) - DOI - DOI - PMC - PubMed
-
- McKenney P. T., Driks A., Eskandarian H. A., Grabowski P., Guberman J., Wang K. H., Gitai Z., Eichenberger P. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 20, 934–93810.1016/j.cub.2010.03.060 (doi:10.1016/j.cub.2010.03.060) - DOI - DOI - PMC - PubMed
-
- Plomp M., Leighton T. J., Wheeler K. E., Malkin A. J. 2005. The high-resolution architecture and structural dynamics of Bacillus spores. Biophys. J. 88, 603–60810.1529/biophysj.104.049312 (doi:10.1529/biophysj.104.049312) - DOI - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources