Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis
- PMID: 22859924
- PMCID: PMC3403248
- DOI: 10.1177/1759720X12437353
Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis
Abstract
The articular cartilage and the subchondral bone form a biocomposite that is uniquely adapted to the transfer of loads across the diarthrodial joint. During the evolution of the osteoarthritic process biomechanical and biological processes result in alterations in the composition, structure and functional properties of these tissues. Given the intimate contact between the cartilage and bone, alterations of either tissue will modulate the properties and function of the other joint component. The changes in periarticular bone tend to occur very early in the development of OA. Although chondrocytes also have the capacity to modulate their functional state in response to loading, the capacity of these cells to repair and modify their surrounding extracellular matrix is relatively limited in comparison to the adjacent subchondral bone. This differential adaptive capacity likely underlies the more rapid appearance of detectable skeletal changes in OA in comparison to the articular cartilage. The OA changes in periarticular bone include increases in subchondral cortical bone thickness, gradual decreases in subchondral trabeular bone mass, formation of marginal joint osteophytes, development of bone cysts and advancement of the zone of calcified cartilage between the articular cartilage and subchondral bone. The expansion of the zone of calcified cartilage contributes to overall thinning of the articular cartilage. The mechanisms involved in this process include the release of soluble mediators from chondrocytes in the deep zones of the articular cartilage and/or the influences of microcracks that have initiated focal remodeling in the calcified cartilage and subchondral bone in an attempt to repair the microdamage. There is the need for further studies to define the pathophysiological mechanisms involved in the interaction between subchondral bone and articular cartilage and for applying this information to the development of therapeutic interventions to improve the outcomes in patients with OA.
Keywords: articular cartilage; biomechanics; bone remodeling; osteoarthritis.
Conflict of interest statement
Figures

Similar articles
-
Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis?Rheum Dis Clin North Am. 2003 Nov;29(4):675-85. doi: 10.1016/s0889-857x(03)00061-9. Rheum Dis Clin North Am. 2003. PMID: 14603577 Review.
-
Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.Ann N Y Acad Sci. 2010 Mar;1192:230-7. doi: 10.1111/j.1749-6632.2009.05240.x. Ann N Y Acad Sci. 2010. PMID: 20392241 Review.
-
Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints.Bone. 2012 Aug;51(2):212-7. doi: 10.1016/j.bone.2011.11.030. Epub 2011 Dec 16. Bone. 2012. PMID: 22197997 Free PMC article.
-
Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk.Nat Rev Rheumatol. 2016 Nov;12(11):632-644. doi: 10.1038/nrrheum.2016.148. Epub 2016 Sep 22. Nat Rev Rheumatol. 2016. PMID: 27652499 Review.
-
Cartilage degradation in osteoarthritis: A process of osteochondral remodeling resembles the endochondral ossification in growth plate?Med Hypotheses. 2018 Dec;121:183-187. doi: 10.1016/j.mehy.2018.08.023. Epub 2018 Aug 27. Med Hypotheses. 2018. PMID: 30396477
Cited by
-
Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities.Osteoarthr Cartil Open. 2024 Aug 17;6(4):100511. doi: 10.1016/j.ocarto.2024.100511. eCollection 2024 Dec. Osteoarthr Cartil Open. 2024. PMID: 39483440 Free PMC article. Review.
-
Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12.Bone Res. 2019 Feb 20;7:5. doi: 10.1038/s41413-018-0041-8. eCollection 2019. Bone Res. 2019. PMID: 30792936 Free PMC article.
-
Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis.Trends Pharmacol Sci. 2014 May;35(5):227-36. doi: 10.1016/j.tips.2014.03.005. Epub 2014 Apr 15. Trends Pharmacol Sci. 2014. PMID: 24745631 Free PMC article. Review.
-
Early inhibition of subchondral bone remodeling slows load-induced posttraumatic osteoarthritis development in mice.J Bone Miner Res. 2021 Oct;36(10):2027-2038. doi: 10.1002/jbmr.4397. Epub 2021 Jul 16. J Bone Miner Res. 2021. PMID: 34155675 Free PMC article.
-
Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis.Ann Rheum Dis. 2021 Apr;80(4):413-422. doi: 10.1136/annrheumdis-2020-218089. Epub 2020 Nov 6. Ann Rheum Dis. 2021. PMID: 33158879 Free PMC article. Review.
References
-
- Amin A.K., Huntley J.S., Simpson A.H., Hall A.C. (2009) Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J Bone Joint Surg Br 91(5): 691–699 - PubMed
-
- Ashraf S., Mapp P.I., Walsh D.A. (2011) Contributions of angiogenesis to inflammation, joint damage and pain in a rat model of osteoarthritis. Arthritis Rheum, in press - PubMed
-
- Bancroft L.W., Peterson J.J., Kransdorf M.J. (2004) Cysts, geodes, and erosions. Radiol Clin North Am 42: 73–87 - PubMed
-
- Bau B., Gebhard P.M., Haag J., Knorr T., Bartnik E., Aigner T. (2002) Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 46: 2648–2657 - PubMed
-
- Bennell K.L., Creaby M.W., Wrigley T.V., Bowles K.A., Hinman R.S., Cicuttini F., et al. (2011) Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann Rheum Dis 69: 1151–1154 - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical