Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;6(7):e1777.
doi: 10.1371/journal.pntd.0001777. Epub 2012 Jul 31.

A simple strain typing assay for Trypanosoma cruzi: discrimination of major evolutionary lineages from a single amplification product

Affiliations

A simple strain typing assay for Trypanosoma cruzi: discrimination of major evolutionary lineages from a single amplification product

Raul O Cosentino et al. PLoS Negl Trop Dis. 2012.

Abstract

Background: Trypanosoma cruzi is the causative agent of Chagas' Disease. The parasite has a complex population structure, with six major evolutionary lineages, some of which have apparently resulted from ancestral hybridization events. Because there are important biological differences between these lineages, strain typing methods are essential to study the T. cruzi species. Currently, there are a number of typing methods available for T. cruzi, each with its own advantages and disadvantages. However, most of these methods are based on the amplification of a variable number of loci.

Methodology/principal findings: We present a simple typing assay for T. cruzi, based on the amplification of a single polymorphic locus: the TcSC5D gene. When analyzing sequences from this gene (a putative lathosterol/episterol oxidase) we observed a number of interesting polymorphic sites, including 1 tetra-allelic, and a number of informative tri- and bi-allelic SNPs. Furthermore, some of these SNPs were located within the recognition sequences of two commercially available restriction enzymes. A double digestion with these enzymes generates a unique restriction pattern that allows a simple classification of strains in six major groups, corresponding to DTUs TcI-TcIV, the recently proposed Tcbat lineage, and TcV/TcVI (as a group). Direct sequencing of the amplicon allows the classification of strains into seven groups, including the six currently recognized evolutionary lineages, by analyzing only a few discriminant polymorphic sites.

Conclusions/significance: Based on these findings we propose a simple typing assay for T. cruzi that requires a single PCR amplification followed either by restriction fragment length polymorphism analysis, or direct sequencing. In the panel of strains tested, the sequencing-based method displays equivalent inter-lineage resolution to recent multi- locus sequence typing assays. Due to their simplicity and low cost, the proposed assays represent a good alternative to rapidly screen strain collections, providing the cornerstone for the development of robust typing strategies.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Key polymorphic sites in the T. cruzi TcSC5D gene.
A: diploid genotypes built from identified highly informative sites (see main text), showing a section of one chromatogram around the tetra-allelic SNP at position 657. B: Summary of observed nucleotide changes between DTUs for these six sites. In the case of the comparisons with the TcII DTU, this is the minimum expected number of changes (marked with * in the figure), because of the diversity observed at position 618 in strains from this DTU.
Figure 2
Figure 2. The TcSC5D locus as a lineage discriminant marker.
A: schematic view of the TcSC5D amplicon, with all identified SNPs, including key discriminant positions (marked in blue), and polymorphic HpaI/SphI restriction enzyme sites, showing their presence/absence in each lineage. B: Restriction fragment length polymorphism analysis of the TcSC5D amplification product. Fragments of the SphI/HpaI double digestion were resolved in a 2% TBE-agarose gel. Lanes in the gel correspond to: molecular size markers (lane 1), and DNA from T. cruzi strains (lanes 2–21). These are: Sylvio X10 (lane 3), Dm28c (4), and CAI72 (5) for DTU TcI; MAS1 cl1 (6), TU18 cl93 (7), and IVV cl4 (8) for DTU TcII; M6241 cl6 (9), M5631 cl5 (10), and X109/2 (11) for DUT TcIII; CanIII cl1(12), Dog Theis (13) and 92122102R (14) for DTU TcIV; Sc43 (15), MN cl2 (16) and Teh53 (17) for DTU TcV; CL-Brener (18), P63 cl1 (19), and Tulahuen cl2 (20) for DTU TcVI; and TCC1994 and TCC1122 for DTU Tcbat. The corresponding locus from T. cruzi marinkellei was analyzed in lanes 22/23 (stocks B3 and B7).
Figure 3
Figure 3. Restriction fragment length polymorphism analysis of the TcMK amplification product.
A: a multiple sequence alignment of the 5′-UTR just upstream of the translational start codon, showing the polymorphic XhoI site. A solid line box marks the XhoI site in TcV strains. B: Agarose gel electrophoresis showing a PCR-RFLP analysis of selected strains. Strains analyzed were: Sc43 cl9, MN cl2, LL014 and Teh53 for DTU TcV; and Tulahuen cl2, CL-Brener, Tul2 and P63 cl1 for DTU TcVI.
Figure 4
Figure 4. Proposed typing strategy based on the TcSC5D locus.
A: the highly streamlined TcSC5D-PCR-RFLP assay can discriminate all non-hybrid lineages. If discrimination of DTUs TcV from TcVI is necessary, sequencing of the TcSC5D amplification locus is required. B: alternatively, if the method of choice is the PCR-RFLP, then a second locus can be assayed to resolve these DTUs. This additional locus can be the TcMK gene as shown in the figure (this work, see main text), or the gp72 gene (polymorphic TaqI site [41]).

References

    1. Rassi A, Rassi A, Marin Neto JA (2010) Chagas disease. Lancet 375: 1388–1402. - PubMed
    1. Dvorak JA (1984) The natural heterogeneity of Trypanosoma cruzi: biological and medical implications. J Cell Biochem 24: 357–371. - PubMed
    1. Tibayrenc M, Ayala FJ (1998) Isozyme variability in Trypanosoma cruzi, the agent of Chagas' disease: Genetical, taxomonical, and epidemiological significance. Evolution 42: 277–292. - PubMed
    1. Tibayrenc M, Ward P, Moya A, Ayala FJ (1986) Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proc Natl Acad Sci U S A 83: 115–119. - PMC - PubMed
    1. Tibayrenc M, Ayala FJ (2002) The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol 18: 405–410. - PubMed

Publication types

MeSH terms

Associated data