The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells
- PMID: 22864381
- PMCID: PMC3421441
- DOI: 10.1038/msb.2012.25
The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells
Abstract
Dynamic interactions between intracellular networks regulate cellular homeostasis and responses to perturbations. Targeted therapy is aimed at perturbing oncogene addiction pathways in cancer, however, development of acquired resistance to these drugs is a significant clinical problem. A network-based computational analysis of global gene expression data from matched sensitive and acquired drug-resistant cells to lapatinib, an EGFR/ErbB2 inhibitor, revealed an increased expression of the glucose deprivation response network, including glucagon signaling, glucose uptake, gluconeogenesis and unfolded protein response in the resistant cells. Importantly, the glucose deprivation response markers correlated significantly with high clinical relapse rates in ErbB2-positive breast cancer patients. Further, forcing drug-sensitive cells into glucose deprivation rendered them more resistant to lapatinib. Using a chemical genomics bioinformatics mining of the CMAP database, we identified drugs that specifically target the glucose deprivation response networks to overcome the resistant phenotype and reduced survival of resistant cells. This study implicates the chronic activation of cellular compensatory networks in response to targeted therapy and suggests novel combinations targeting signaling and metabolic networks in tumors with acquired resistance.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                Comment in
- 
  
  Metabolic rewiring drives resistance to targeted cancer therapy.Mol Syst Biol. 2012 Jul 17;8:597. doi: 10.1038/msb.2012.30. Mol Syst Biol. 2012. PMID: 22806144 Free PMC article. No abstract available.
References
- 
    - Azuma K, Tsurutani J, Sakai K, Kaneda H, Fujisaka Y, Takeda M, Watatani M, Arao T, Satoh T, Okamoto I, Kurata T, Nishio K, Nakagawa K (2011) Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure. Biochem Biophys Res Commun 407: 219–224 - PubMed
 
- 
    - Chen FL, Xia W, Spector NL (200) Acquired resistance to small molecule ErbB2 tyrosine kinase inhibitors. Clin Cancer Res 14: 6730–6734 - PubMed
 
- 
    - Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Jänne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043 - PubMed
 
- 
    - Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sánchez V, Chakrabarty A, Dave B, Cook RS, Pao W, McKinely E, Manning HC, Chang J, Arteaga CL (2011) Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA 108: 5021–5026 - PMC - PubMed
 
- 
    - Haber DA, Gray NS, Baselga J (2011) The evolving war on cancer. Cell 145: 19–24 - PubMed
 
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Molecular Biology Databases
- Research Materials
- Miscellaneous
 
        