Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 31:3:243.
doi: 10.3389/fimmu.2012.00243. eCollection 2012.

Lymphotoxin-sensitive microenvironments in homeostasis and inflammation

Affiliations

Lymphotoxin-sensitive microenvironments in homeostasis and inflammation

Bryant Boulianne et al. Front Immunol. .

Abstract

Stromal cell microenvironments within lymphoid tissues are designed to support immune cell homeostasis and to regulate ongoing immune responses to pathogens. Such stromal cell networks have been best characterized within lymphoid tissues including the spleen and peripheral lymph nodes, and systems for classifying stromal cell phenotypes and functions are emerging. In response to inflammation, stromal cell networks within lymphoid tissues change in order to accommodate and regulate lymphocyte activation. Local inflammation in non-lymphoid tissues can also induce de novo formation of lymphoid aggregates, which we term here "follicle-like structures." Of note, the stromal cell networks that underpin such follicles are not as well characterized and may be different depending on the anatomical site. However, one common element that is integral to the maintenance of stromal cell environments, either in lymphoid tissue or in extra-lymphoid sites, is the constitutive regulation of stromal cell phenotype and/or function by the lymphotoxin (LT) pathway. Here we discuss how the LT pathway influences stromal cell environments both in homeostasis and in the context of inflammation in lymphoid and non-lymphoid tissues.

Keywords: chemokine; fibroblastic reticular cell; follicle-like structures; follicular dendritic cell; lymph node; lymphotoxin.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Stromal cell elements in the lymph node under lymphotoxin control during homeostasis and inflammation. The LT pathway is critical for the proper maintenance and function of various stromal cell elements in the LN. During homeostasis, chemokine production by FDC in the primary follicle is required for B cell positioning (1). LTβR signaling in endothelial cells of HEV is also required for the expression of sulfotransferases that promote the proper glycosylation of PNAd (2). During inflammation, the LN becomes enlarged, stromal cells acquire new functions, and increased vascularization occurs (not depicted). In addition, clusters of B and T cells aggregate within germinal centers during T-dependent immune responses, and highly differentiated FDC within the GC environment require LTβR signaling (3). To facilitate the output of plasma cells that emerge from these GC reactions, remodeling of the medullary region has been shown to occur (4).

Similar articles

Cited by

References

    1. Allen C. D., Cyster J. G. (2008). Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 20 14–25 - PMC - PubMed
    1. Aloisi F., Pujol-Borrell R. (2006). Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6 205–217 - PubMed
    1. Ame-Thomas P., Maby-El Hajjami H., Monvoisin C., Jean R., Monnier D., Caulet-Maugendre S., Guillaudeux T., Lamy T., Fest T., Tarte K. (2007). Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109 693–702 - PubMed
    1. Ansel K. M., Ngo V. N., Hyman P. L., Luther S. A., Forster R., Sedgwick J. D., Browning J. L., Lipp M., Cyster J. G. (2000). A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406 309–314 - PubMed
    1. Bajenoff M., Egen J. G., Koo L. Y., Laugier J. P., Brau F., Glaichenhaus N., Germain R. N. (2006). Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25 989–1001 - PMC - PubMed

LinkOut - more resources