Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 6:12:182.
doi: 10.1186/1471-2334-12-182.

Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan

Affiliations

Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan

Mei-Mei Kuan et al. BMC Infect Dis. .

Abstract

Background: Dengue has not reached an endemic status in Taiwan; nevertheless, we have implemented a fever screening program at airports for the early detection of febrile passengers with a dengue infection. This study is intended to assess the performance of the airport screening procedures for dengue infection.

Methods: We analyzed data from the national surveillance system of the Taiwan Centers for Disease Control. We included the imported dengue cases reported by sentinel airports and clinics as well as the domestic cases from 2007-2010.

Results: Approximately 44.9% (95%CI: 35.73-54.13%) of the confirmed imported dengue cases with an apparent symptom (febrile) in the viremic stage were detected via the airport fever screening program, with an estimated positive predictive value of 2.36% (95% CI: 0.96- 3.75%) and a negative predictive value > 99.99%. Fluctuations in the number of the symptomatic imported dengue cases identified in the airports (X) were associated with the total number of imported dengue cases (Y) based on a regression analysis of a biweekly surveillance (i.e., n = 104, R(2)(X:Y) = 0.61, P < 0.005). Additionally, the fluctuating patterns in the cumulative numbers of the imported dengue cases (X) with a 1-2 month lead time (t) was in parallel with that of the domestic dengue cases (Y) based on a consecutive 4-year surveillance (i.e., n = 48, R(2)(X(t-1):Y) = 0.22, R(2)(X(t-2):Y) = 0.31, P < 0.001) from 2007-2010.

Conclusions: A moderate sensitivity of detecting dengue at the airports examined in this study indicated some limitations of the fever screening program for the prevention of importation. The screening program could assist in the rapid triage for self-quarantine of some symptomatic dengue cases that were in the viremic stage at the borders and contribute to active sentinel surveillance; however, the blocking of viral transmission to susceptible populations (neighbors or family) from all of the viremic travelers, including those with or without symptoms, is critical to prevent dengue epidemics. Therefore, the reinforcement of mosquito bite prevention and household vector control in dengue-endemic or dengue-competent hotspots during an epidemic season is essential and highly recommended.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Epidemiological trends of the dengue importation into Taiwan. (A) The scatter plots show the relationship between the number of imported dengue cases, according to the viremic status as measured by a biweekly surveillance of the airport screening program, and the number of total dengue importations into Taiwan from 2007–2010. The straight line represents a line fitted by the means of a least squares regression. The coefficient of determination, R2, was estimated to be 0.61 (n = 104, P < 0.0001). The 95% confidence interval of the slope is 1.42-1.94. (B) The scatter plots show the relationship, as measured by a biweekly surveillance, between the number of dengue importations detected in the airport screening program and the number of dengue importations detected in the community from 2007–2010. The straight line represents a fitted line by the means of a least squares regression. The coefficient of determination, R2, was estimated to be 0.22 (n = 104, P < 0.0001). The 95% confidence interval of the slope is 0.44-0.96.
Figure 2
Figure 2
Trends of the dengue epidemics and the relationships among the cases in Taiwan from 2007–2010. (A) A comparison of the fluctuations of the monthly number of imported (Xt) vs. domestic cases (Y). (B) The diversity in the annual dominant dengue serotypes among the domestic and imported cases. (C) The scatter plots show the relationship of the number of imported dengue cases (Xt-0), (Xt-1), (Xt-2) or (Xt-3) vs. the number of domestic dengue cases, as detected by a monthly surveillance (Y). The respective straight lines represent the lines fitted by the means of the least squares regressions. The coefficients of determination, R2, were estimated to be 0.059, 0.21, 0.31, or 0.21 (n = 48) with respective 95% confidence intervals for the slopes being −0.57-6.67, 2.68-9.19, 3.81-9.93, or 2.46-8.98. (C) The diversity in the annual dominant dengue serotypes among the domestic and imported cases.

References

    1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12 Suppl):S7–16. - PMC - PubMed
    1. Gubler DJ. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. CAB International, New York; 1997. pp. 1–22.
    1. Tomlinson SM, Watowich SJ. Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors. Antiviral Res. 2012;93(2):245–252. doi: 10.1016/j.antiviral.2011.12.003. - DOI - PMC - PubMed
    1. Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol. 2008;62:71–92. doi: 10.1146/annurev.micro.62.081307.163005. - DOI - PubMed
    1. Forshey BM, Guevara C, Laguna-Torres VA, Cespedes M, Vargas J, Gianella A, Vallejo E, Madrid C, Aguayo N, Gotuzzo E, Suarez V, Morales AM, Beingolea L, Reyes N, Perez J, Negrete M, Rocha C, Morrison AC, Russell KL, Blair PJ, Olson JG, Kochel TJ. Arboviral etiologies of acute febrile illnesses in Western South America, 2000–2007. PLoS Negl Trop Dis. 2010;4(8):e787. doi: 10.1371/journal.pntd.0000787. - DOI - PMC - PubMed