Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug 6:9:63.
doi: 10.1186/1742-4690-9-63.

Human Immunodeficiency Virus Gag and protease: partners in resistance

Affiliations
Review

Human Immunodeficiency Virus Gag and protease: partners in resistance

Axel Fun et al. Retrovirology. .

Abstract

Human Immunodeficiency Virus (HIV) maturation plays an essential role in the viral life cycle by enabling the generation of mature infectious virus particles through proteolytic processing of the viral Gag and GagPol precursor proteins. An impaired polyprotein processing results in the production of non-infectious virus particles. Consequently, particle maturation is an excellent drug target as exemplified by inhibitors specifically targeting the viral protease (protease inhibitors; PIs) and the experimental class of maturation inhibitors that target the precursor Gag and GagPol polyproteins. Considering the different target sites of the two drug classes, direct cross-resistance may seem unlikely. However, coevolution of protease and its substrate Gag during PI exposure has been observed both in vivo and in vitro. This review addresses in detail all mutations in Gag that are selected under PI pressure. We evaluate how polymorphisms and mutations in Gag affect PI therapy, an aspect of PI resistance that is currently not included in standard genotypic PI resistance testing. In addition, we consider the consequences of Gag mutations for the development and positioning of future maturation inhibitors.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A schematic representation of HIV particle maturation. At the top, the viral GagPol polyprotein is depicted. On the left, the 5 sequential proteolytic processing steps of Gag are shown. In the middle, the 5 Gag cleavage sites (CS) and their nucleotide and corresponding amino acid sequences are shown. The numbers above the residues correspond to their position in the Gag polyprotein. At the top of the middle panel, the location of the p5-p5’ positions is indicated. On the right are schematic representations and electron-microscopy images of an HIV particle. Top: the immature, non-infectious particle with its granulated core. Bottom: the fully mature and infectious virion with its characteristic electron-dense conical core. The pacman figure represents the viral protease enzyme.

References

    1. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. - DOI - PubMed
    1. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure. 2002;10:369–381. doi: 10.1016/S0969-2126(02)00720-7. - DOI - PubMed
    1. Krausslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Natl Acad Sci U S A. 1989;86:807–811. doi: 10.1073/pnas.86.3.807. - DOI - PMC - PubMed
    1. Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol. 1994;68:8017–8027. - PMC - PubMed
    1. Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Krausslich HG. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol. 1998;72:2846–2854. - PMC - PubMed

Publication types

MeSH terms

Substances