Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2012 Nov;69(11):1420-9.
doi: 10.1001/archneurol.2012.1970.

Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial

Affiliations
Randomized Controlled Trial

Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial

Laura D Baker et al. Arch Neurol. 2012 Nov.

Abstract

Background: Growth hormone–releasing hormone(GHRH), growth hormone, and insulin like growth factor 1 have potent effects on brain function, their levels decrease with advancing age, and they likely play a role in the pathogenesis of Alzheimer disease. Previously, we reported favorable cognitive effects of short-term GHRH administration in healthy older adults and provided preliminary evidence to suggest a similar benefit in adults with mild cognitive impairment (MCI).

Objective: To examine the effects of GHRH on cognitive function in healthy older adults and in adults with MCI.

Design: Randomized,double-blind,placebo-controlled trial.

Setting: Clinical Research Center, University of Washington School of Medicine in Seattle.

Participants: A total of 152 adults (66 with MCI) ranging in age from 55 to 87 years (mean age, 68 years); 137 adults (76 healthy participants and 61 participants with MCI) successfully completed the study.

Intervention: Participants self-administered daily subcutaneous injections of tesamorelin (Theratechnologies Inc),a stabilized analog of human GHRH (1 mg/d), or placebo 30 minutes before bedtime for 20 weeks. At baseline, at weeks 10 and 20 of treatment, and after a 10-week washout(week 30), blood samples were collected, and parallel versions of a cognitive battery were administered. Before and after the 20-week intervention, participants completed an oral glucose tolerance test and a dual-energy x-ray absorptiometry scan to measure body composition.

Main outcome measures: Primary cognitive outcomes were analyzed using analysis of variance and included 3 composites reflecting executive function, verbal memory, and visual memory. Executive function was assessed with Stroop Color-Word Interference,Task Switching, the Self-Ordered Pointing Test, and Word Fluency, verbal memory was assessed with Story Recall and the Hopkins Verbal Learning Test,and visual memory was assessed with the Visual-Spatial Learning Test and Delayed Match-to-Sample.

Results: The intent-to-treat analysis indicated a favorable effect of GHRH on cognition (P=.03), which was comparable in adults with MCI and healthy older adults.The completer analysis showed a similar pattern, with a more robust GHRH effect (P=.002). Subsequent analyses indicated a positive GHRH effect on executive function (P=.005) and a trend showing a similar treatment-related benefit in verbal memory(P=.08). Treatment with GHRH increased insulin like growth factor 1 levels by 117 %(P.001), which remained within the physiological range, and reduced percent body fat by 7.4%(P.001). Treatment with GHRH increased fasting insulin levels within the normal range by 35%in adults with MCI (P.001) but not in healthy adults. Adverse events were mild and were reported by 68%of GHRH treated adults and 36% of those who received placebo.

Conclusions: Twenty weeks of GHRH administration had favorable effects on cognition in both adults with MCI and healthy older adults. Longer-duration treatment trials are needed to further examine the therapeutic potential of GHRH administration on brain health during normal aging and “pathological aging.”

Trial registration: clinicaltrials.gov Identifier: NCT00257712

PubMed Disclaimer

Figures

Figure 1
Figure 1
Consolidated Standards of Reporting Trials flow diagram of healthy older adults and adults with mild cognitive impairment (MCI). AE indicates adverse event; GHRH, growth hormone–releasing hormone; and IGF-1, insulinlike growth factor 1.
Figure 2
Figure 2
Cognitive response to growth hormone–releasing hormone (GHRH). Mean z scores representing change from baseline in composites of executive function (A) and verbal memory (B), expressed as residualized change scores. Treatment with GHRH had favorable effects on executive function (P = .005) as measured by Task Switching accuracy, Stroop Color-Word Interference reaction time (voice onset latency) on “interference” trials, Self-Ordered Pointing Test accuracy, and Word Fluency. A similar trend was observed for verbal memory (P = .08) as measured by total recall (immediate + delayed) on the Hopkins Verbal Learning Test and total Story Recall. Pairwise comparisons between subgroups defined by diagnosis are not presented because the main finding indicates a treatment effect for the groups combined and no treatment × diagnosis interaction. Visual memory did not benefit from GHRH administration. Error bars indicate standard error of the mean. MCI indicates mild cognitive impairment.
Figure 3
Figure 3
Mean serum insulinlike growth factor 1 (IGF-1) levels at baseline (week 0) and at weeks 10 and 20 (to convert to nanomoles per liter, multiply by 0.131). The IGF-1 levels increased with the administration of growth hormone–releasing hormone (GHRH) (P < .001), with no differences observed as a function of time (week 10 vs week 20) or diagnosis (healthy vs mild cognitive impairment [MCI]). Error bars indicate standard error of the mean.

Comment in

References

    1. Thornton PL, Ingram RL, Sonntag WE. Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory. J Gerontol A Biol Sci Med Sci. 2000;55(2):B106–B112. - PubMed
    1. Friedlander AL, Butterfield GE, Moynihan S, et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab. 2001;86(4):1496–1503. - PubMed
    1. Papadakis MA, Grady D, Black D, et al. Growth hormone replacement in healthy older men improves body composition but not functional ability. Ann Intern Med. 1996;124(8):708–716. - PubMed
    1. Dhillon S. Tesamorelin: a review of its use in the management of HIV-associated lipodystrophy. Drugs. 2011;71(8):1071–1091. - PubMed
    1. Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4(2):195–212. - PubMed

Publication types

MeSH terms

Substances

Associated data