In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients
- PMID: 22871995
- DOI: 10.1038/clpt.2012.109
In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients
Abstract
Tacrolimus is metabolized by CYP3A4 and CYP3A5 and is characterized by a narrow therapeutic index and highly variable pharmacokinetics. This cross-sectional study in 59 renal transplant patients investigated the relationship among in vivo CYP3A4 activity (assessed using midazolam as a drug probe), CYP3A5 genotype on the one hand, and tacrolimus pharmacokinetics on the other hand, taking into account other potential determinants of tacrolimus disposition. In vivo CYP3A4 activity and CYP3A5 genotype explain 56-59% of variability in tacrolimus dose requirements and clearance, contributing ~25 and 30%, respectively. Hematocrit explains an additional 4-14%. These data indicate that CYP3A4- and CYP3A5-mediated tacrolimus metabolisms are major determinants of tacrolimus disposition in vivo and explain a substantial part of the clinically observed high interindividual variability in tacrolimus pharmacokinetics. Furthermore, these data provide a potential basis for a comprehensive approach to predicting tacrolimus dose requirement in individual patients and hence provide a strategy to tailor immunosuppressive therapy in transplant recipients.
Comment in
-
Pretransplantation pharmacokinetic assessments to predict posttransplantation dosing requirements in renal transplant recipients: what is known?Clin Pharmacol Ther. 2013 Apr;93(4):306-7. doi: 10.1038/clpt.2012.214. Epub 2012 Oct 24. Clin Pharmacol Ther. 2013. PMID: 23299646 No abstract available.
-
Response to "pretransplantation pharmacokinetic assessments to predict posttransplantation dosing requirements in renal transplant recipients: what is known?".Clin Pharmacol Ther. 2013 Apr;93(4):307-8. doi: 10.1038/clpt.2012.234. Epub 2012 Dec 6. Clin Pharmacol Ther. 2013. PMID: 23340478 No abstract available.
-
CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients.Clin Pharmacol Ther. 2013 Aug;94(2):201-2. doi: 10.1038/clpt.2013.68. Epub 2013 Apr 2. Clin Pharmacol Ther. 2013. PMID: 23588314 No abstract available.
-
Response to "CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients".Clin Pharmacol Ther. 2013 Aug;94(2):202-3. doi: 10.1038/clpt.2013.94. Epub 2013 May 9. Clin Pharmacol Ther. 2013. PMID: 23665867 No abstract available.
Similar articles
-
Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.Pharmacogenet Genomics. 2013 May;23(5):251-61. doi: 10.1097/FPC.0b013e32835fcbb6. Pharmacogenet Genomics. 2013. PMID: 23459029
-
CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients.Clin Pharmacol Ther. 2013 Aug;94(2):201-2. doi: 10.1038/clpt.2013.68. Epub 2013 Apr 2. Clin Pharmacol Ther. 2013. PMID: 23588314 No abstract available.
-
Response to "CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients".Clin Pharmacol Ther. 2013 Aug;94(2):202-3. doi: 10.1038/clpt.2013.94. Epub 2013 May 9. Clin Pharmacol Ther. 2013. PMID: 23665867 No abstract available.
-
Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II.Clin Pharmacokinet. 2010 Apr;49(4):207-21. doi: 10.2165/11317550-000000000-00000. Clin Pharmacokinet. 2010. PMID: 20214406 Review.
-
CYP3A pharmacogenetic association with tacrolimus pharmacokinetics differs based on route of drug administration.Pharmacogenomics. 2018 Apr;19(6):563-576. doi: 10.2217/pgs-2018-0003. Epub 2018 Apr 9. Pharmacogenomics. 2018. PMID: 29629825 Review.
Cited by
-
Pharmacogenetics Based Dose Prediction Model for Initial Tacrolimus Dosing in Renal Transplant Recipients.Front Pharmacol. 2021 Nov 30;12:726784. doi: 10.3389/fphar.2021.726784. eCollection 2021. Front Pharmacol. 2021. PMID: 34916931 Free PMC article.
-
A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques.Front Med (Lausanne). 2022 May 27;9:813117. doi: 10.3389/fmed.2022.813117. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35712101 Free PMC article.
-
Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients.Pharmacogenomics. 2018 Feb;19(3):175-184. doi: 10.2217/pgs-2017-0187. Epub 2018 Jan 10. Pharmacogenomics. 2018. PMID: 29318894 Free PMC article.
-
Weight of ABCB1 and POR genes on oral tacrolimus exposure in CYP3A5 nonexpressor pediatric patients with stable kidney transplant.Pharmacogenomics J. 2018 Jan;18(1):180-186. doi: 10.1038/tpj.2016.93. Epub 2017 Jan 17. Pharmacogenomics J. 2018. PMID: 28094348 Clinical Trial.
-
Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics.Pharmaceutics. 2022 Aug 23;14(9):1755. doi: 10.3390/pharmaceutics14091755. Pharmaceutics. 2022. PMID: 36145503 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases