Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep;53(9):1367-74.
doi: 10.2967/jnumed.112.103325. Epub 2012 Aug 7.

Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis

Affiliations
Free article

Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis

Norbert Galldiks et al. J Nucl Med. 2012 Sep.
Free article

Abstract

The aim of this study was to investigate the potential of O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET for differentiating local recurrent brain metastasis from radiation necrosis after radiation therapy because the use of contrast-enhanced MRI for this issue is often difficult.

Methods: Thirty-one patients (mean age ± SD, 53 ± 11 y) with single or multiple contrast-enhancing brain lesions (n = 40) on MRI after radiation therapy of brain metastases were investigated with dynamic (18)F-FET PET. Maximum and mean tumor-to-brain ratios (TBR(max) and TBR(mean), respectively; 20-40 min after injection) of (18)F-FET uptake were determined. Time-activity curves were generated, and the time to peak (TTP) was calculated. Furthermore, time-activity curves of each lesion were assigned to one of the following curve patterns: (I) constantly increasing (18)F-FET uptake, (II) (18)F-FET uptake peaking early (TTP ≤ 20 min) followed by a plateau, and (III) (18)F-FET uptake peaking early (TTP ≤ 20 min) followed by a constant descent. The diagnostic accuracy of the TBR(max) and TBR(mean) of (18)F-FET uptake and the curve patterns for the correct identification of recurrent brain metastasis were evaluated by receiver-operating-characteristic analyses or Fisher exact test for 2 × 2 contingency tables using subsequent histologic analysis (11 lesions in 11 patients) or clinical course and MRI findings (29 lesions in 20 patients) as reference.

Results: Both TBR(max) and TBR(mean) were significantly higher in patients with recurrent metastasis (n = 19) than in patients with radiation necrosis (n = 21) (TBR(max), 3.2 ± 0.9 vs. 2.3 ± 0.5, P < 0.001; TBR(mean), 2.1 ± 0.4 vs. 1.8 ± 0.2, P < 0.001). The diagnostic accuracy of (18)F-FET PET for the correct identification of recurrent brain metastases reached 78% using TBR(max) (area under the ROC curve [AUC], 0.822 ± 0.07; sensitivity, 79%; specificity, 76%; cutoff, 2.55; P = 0.001), 83% using TBR(mean) (AUC, 0.851 ± 0.07; sensitivity, 74%; specificity, 90%; cutoff, 1.95; P < 0.001), and 92% for curve patterns II and III versus curve pattern I (sensitivity, 84%; specificity, 100%; P < 0.0001). The highest accuracy (93%) to diagnose local recurrent metastasis was obtained when both a TBR(mean) greater than 1.9 and curve pattern II or III were present (AUC, 0.959 ± 0.03; sensitivity, 95%; specificity, 91%; P < 0.001).

Conclusion: Our findings suggest that the combined evaluation of the TBR(mean) of (18)F-FET uptake and the pattern of the time-activity curve can differentiate local brain metastasis recurrence from radionecrosis with high accuracy. (18)F-FET PET may thus contribute significantly to the management of patients with brain metastases.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources