The hierarchical structure and mechanics of plant materials
- PMID: 22874093
- PMCID: PMC3479918
- DOI: 10.1098/rsif.2012.0341
The hierarchical structure and mechanics of plant materials
Abstract
The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.
Figures













Similar articles
-
Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties.J Biotechnol. 2007 Mar 10;128(4):919-34. doi: 10.1016/j.jbiotec.2006.12.030. Epub 2007 Jan 17. J Biotechnol. 2007. PMID: 17280732
-
Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes.J Agric Food Chem. 2002 Apr 24;50(9):2595-600. doi: 10.1021/jf011598c. J Agric Food Chem. 2002. PMID: 11958628
-
Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.BMC Plant Biol. 2017 Jun 15;17(1):104. doi: 10.1186/s12870-017-1046-y. BMC Plant Biol. 2017. PMID: 28619057 Free PMC article.
-
Understanding Plant Biomass via Computational Modeling.Adv Mater. 2021 Jul;33(28):e2003206. doi: 10.1002/adma.202003206. Epub 2020 Sep 18. Adv Mater. 2021. PMID: 32945027 Review.
-
[Application of the Raman spectroscopy to the study of plant cell walls].Guang Pu Xue Yu Guang Pu Fen Xi. 2013 May;33(5):1239-43. Guang Pu Xue Yu Guang Pu Fen Xi. 2013. PMID: 23905327 Review. Chinese.
Cited by
-
Deformation resilient cement structures using 3D-printed molds.iScience. 2021 Feb 12;24(3):102174. doi: 10.1016/j.isci.2021.102174. eCollection 2021 Mar 19. iScience. 2021. PMID: 33718827 Free PMC article.
-
Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding.Front Plant Sci. 2015 Feb 23;6:52. doi: 10.3389/fpls.2015.00052. eCollection 2015. Front Plant Sci. 2015. PMID: 25755656 Free PMC article. Review.
-
Journey of water in pine cones.Sci Rep. 2015 May 6;5:9963. doi: 10.1038/srep09963. Sci Rep. 2015. PMID: 25944117 Free PMC article.
-
Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces.J R Soc Interface. 2013 Apr 10;10(83):20130174. doi: 10.1098/rsif.2013.0174. Print 2013 Jun 6. J R Soc Interface. 2013. PMID: 23576783 Free PMC article.
-
Impact of drying methods on the changes of fruit microstructure unveiled by X-ray micro-computed tomography.RSC Adv. 2019 Apr 4;9(19):10606-10624. doi: 10.1039/c9ra00648f. eCollection 2019 Apr 3. RSC Adv. 2019. PMID: 35515289 Free PMC article.
References
-
- Gibson L. J., Ashby M. F., Harley B. A. 2010. Cellular materials in nature and medicine. Cambridge, UK: Cambridge University Press
-
- Dinwoodie J. M. 1981. Timber: its nature and behaviour. New York, NY: Van Nostrand Reinhold
-
- Niklas K. J. 1992. Plant biomechanics. Chicago, IL: University of Chicago Press
-
- Hori R., Muller M., Watanabe U., Lichtenegger H. C., Fratzl P., Sugiyama J. 2002. The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. J. Mater. Sci. 37, 4279–428410.1023/A:1020688132345 (doi:10.1023/A:1020688132345) - DOI - DOI
-
- Peura M., Muller M., Vainio U., Saren M.-P., Saranpaa P., Serimaa R. 2008. X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees 22, 49–6110.1007/s00468-007-0168-5 (doi:10.1007/s00468-007-0168-5) - DOI - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources