Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 9;14(4):e112.
doi: 10.2196/jmir.2152.

Making sense of mobile health data: an open architecture to improve individual- and population-level health

Affiliations

Making sense of mobile health data: an open architecture to improve individual- and population-level health

Connie Chen et al. J Med Internet Res. .

Abstract

Mobile phones and devices, with their constant presence, data connectivity, and multiple intrinsic sensors, can support around-the-clock chronic disease prevention and management that is integrated with daily life. These mobile health (mHealth) devices can produce tremendous amounts of location-rich, real-time, high-frequency data. Unfortunately, these data are often full of bias, noise, variability, and gaps. Robust tools and techniques have not yet been developed to make mHealth data more meaningful to patients and clinicians. To be most useful, health data should be sharable across multiple mHealth applications and connected to electronic health records. The lack of data sharing and dearth of tools and techniques for making sense of health data are critical bottlenecks limiting the impact of mHealth to improve health outcomes. We describe Open mHealth, a nonprofit organization that is building an open software architecture to address these data sharing and "sense-making" bottlenecks. Our architecture consists of open source software modules with well-defined interfaces using a minimal set of common metadata. An initial set of modules, called InfoVis, has been developed for data analysis and visualization. A second set of modules, our Personal Evidence Architecture, will support scientific inferences from mHealth data. These Personal Evidence Architecture modules will include standardized, validated clinical measures to support novel evaluation methods, such as n-of-1 studies. All of Open mHealth's modules are designed to be reusable across multiple applications, disease conditions, and user populations to maximize impact and flexibility. We are also building an open community of developers and health innovators, modeled after the open approach taken in the initial growth of the Internet, to foster meaningful cross-disciplinary collaboration around new tools and techniques. An open mHealth community and architecture will catalyze increased mHealth efficiency, effectiveness, and innovation.

PubMed Disclaimer

Conflict of interest statement

None declared.

Figures

Figure 1
Figure 1
Stovepipe versus open architectures: mHealth apps (left) are built independently with little sharing of data, methods, or learning. In contrast, the Internet has an hourglass architecture (right), in which a common protocol, transmission control protocol/Internet protocol (TCP/IP), acts as a simple point of commonality at the narrow waist that allows innovation to flourish through open application programming interfaces (APIs) both above and below the waist. Open mHealth aims to catalyze the mHealth ecosystem from a siloed architecture to an hourglass architecture to increase the scale and effectiveness of mHealth.
Figure 2
Figure 2
InfoVis: Third-party data applications and data stores save and manage data. Data processing units (DPUs) are the building blocks for extracting relevant features and patterns from data streams. Data visualization units enable visual presentations to be created from the extracted data features. Each DPU and DVU completes one task, and then can be composed for higher functions. HTTP = hypertext transfer protocol, JSON = JavaScript object notation.

Similar articles

Cited by

References

    1. Smith A. Americans and their cell phones. Washington, DC: Pew Internet & American Life Project; 2011. Aug 15, [2012-08-01]. 69avRbEqc http://pewinternet.org/~/media//Files/Reports/2011/Cell%20Phones%202011.pdf.
    1. Quinn CC, Shardell MD, Terrin ML, Barr EA, Ballew SH, Gruber-Baldini AL. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011 Sep;34(9):1934–42. doi: 10.2337/dc11-0366.dc11-0366 - DOI - PMC - PubMed
    1. Dolan B. mobihealthnews. 2011. Dec 6, [2012-04-27]. Medicaid Patients Reduce Hospitalizations With WellDoc http://mobihealthnews.com/15116/medicaid-patients-reduce-hospitalization...
    1. Whittaker R, Borland R, Bullen C, Lin RB, McRobbie H, Rodgers A. Mobile phone-based interventions for smoking cessation. Cochrane Database Syst Rev. 2009;(4):CD006611. doi: 10.1002/14651858.CD006611.pub2. - DOI - PubMed
    1. Obermayer JL, Riley WT, Asif O, Jean-Mary J. College smoking-cessation using cell phone text messaging. J Am Coll Health. 2004;53(2):71–8. doi: 10.3200/JACH.53.2.71-78. - DOI - PubMed

Publication types