Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation
- PMID: 22875854
- PMCID: PMC3460471
- DOI: 10.1074/jbc.M112.399725
Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation
Abstract
The proprotein convertase PCSK9 is a major target in the treatment of hypercholesterolemia because of its ability bind the LDL receptor (LDLR) and enhance its degradation in endosomes/lysosomes. In the endoplasmic reticulum, the zymogen pro-PCSK9 is first autocatalytically cleaved at its internal Gln(152)↓, resulting in a secreted enzymatically inactive complex of PCSK9 with its inhibitory prosegment (prosegment·PCSK9), which is the active form of PCSK9 on the LDLR. We mutagenized the P1 cleavage site Gln(152) into all other residues except Cys and analyzed the expression and secretion of the resulting mutants. The data demonstrated the following. 1) The only P1 residues recognized by PCSK9 are Gln > Met > Ala > Ser > Thr ≈ Asn, revealing an unsuspected specificity. 2) All other mutations led to the formation of an unprocessed zymogen that acted as a dominant negative retaining the native protein in the endoplasmic reticulum. Analysis of a large panoply of known natural and artificial point mutants revealed that this general dominant negative observation applies to all PCSK9 mutations that result in the inability of the protein to exit the endoplasmic reticulum. Such a tight quality control property of the endoplasmic reticulum may lead to the development of specific PCSK9 small molecule inhibitors that block its autocatalytic processing. Finally, inspired by the most active gain-of-function mutant, D374Y, we evaluated the LDLR degradation activity of 18 Asp(374) variants of PCSK9. All Asp(374) mutations resulted in similar gain-of-function activity on the LDLR except that D374E was as active as native PCSK9, D374G was relatively less active, and D374N and D374P were completely inactive.
Figures









References
-
- Seidah N. G., Mayer G., Zaid A., Rousselet E., Nassoury N., Poirier S., Essalmani R., Prat A. (2008) The activation and physiological functions of the proprotein convertases. Int. J. Biochem. Cell Biol. 40, 1111–1125 - PubMed
-
- Seidah N. G., Prat A. (2012) The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 - PubMed
-
- Chrétien M. (2012) My road to Damascus: how I converted to the prohormone theory and the proprotein convertases. Biochem. Cell Biol., in press - PubMed
-
- Seidah N. G., Benjannet S., Wickham L., Marcinkiewicz J., Jasmin S. B., Stifani S., Basak A., Prat A., Chretien M. (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. U.S.A. 100, 928–933 - PMC - PubMed
-
- Abifadel M., Varret M., Rabès J. P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D., Derré A., Villéger L., Farnier M., Beucler I., Bruckert E., Chambaz J., Chanu B., Lecerf J. M., Luc G., Moulin P., Weissenbach J., Prat A., Krempf M., Junien C., Seidah N. G., Boileau C. (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous