Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov;40(5):1269-76.
doi: 10.1183/09031936.00052612. Epub 2012 Aug 9.

Sweet talk: insights into the nature and importance of glucose transport in lung epithelium

Affiliations
Free article
Review

Sweet talk: insights into the nature and importance of glucose transport in lung epithelium

James P Garnett et al. Eur Respir J. 2012 Nov.
Free article

Abstract

For over 50 years, glucose has been recognised to cross the lung epithelial barrier and be transported by lung epithelial cells. However, until recently, research into these processes focused on their effects on lung liquid volume. Here, we consider a newly identified role for pulmonary glucose transport in maintaining low airway surface liquid (ASL) glucose concentrations and propose that this contributes to lung defence against infection. Glucose diffuses into ASL via paracellular pathways at a rate determined by paracellular permeability and the transepithelial glucose gradient. Glucose is removed from ASL in proximal airways via facilitative glucose transporters, down a concentration gradient generated by intracellular glucose metabolism. In the distal lung, glucose transport via sodium-coupled glucose transporters predominates. These processes vary between species but universally maintain ASL glucose at 3-20-fold lower concentrations than plasma. ASL glucose concentrations are increased in respiratory disease and by hyperglycaemia. Elevated ASL glucose in intensive care patients was associated with increased Staphylococcus aureus infection. Diabetic patients with and without chronic lung disease are at increased risk of respiratory infection. Understanding of mechanisms underlying lung glucose homeostasis could identify new therapeutic targets for control of ASL glucose and prevention and treatment of lung infection.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources