Tagging single nucleotide polymorphisms in the IRF1 and IRF8 genes and tuberculosis susceptibility
- PMID: 22879909
- PMCID: PMC3412841
- DOI: 10.1371/journal.pone.0042104
Tagging single nucleotide polymorphisms in the IRF1 and IRF8 genes and tuberculosis susceptibility
Abstract
Genes encoding IRF1 and IRF8 protein have been proposed as candidate tuberculosis susceptibility genes. In order to elucidate whether the IRF1 and IRF8 variants were associated with tuberculosis susceptibility, we conducted a case-control study consisting of 495 controls and 452 ethnically matched cases with tuberculosis in a Chinese population. Seven haplotype tagging single-nucleotide polymorphisms (tagSNPs) (rs2057656; rs2706381; rs2070724; rs2070721; rs2549008; rs2549007; rs2706386) from HapMap database were analyzed, which provided an almost complete coverage of the genetic variations in the IRF1 gene. Fifteen tagSNPs (rs12924316; rs182511; rs305080; rs2292980; rs925994; rs424971; rs16939967; rs11117415; rs4843860; rs9926411; rs8064189; rs12929551; rs10514611; rs1044873; rs6638) were observed in the IRF8 gene. All these tagSNPs were genotyped by SNPstream genotyping and SNaPshot typing. None of the seven tagSNPs was individually associated with tuberculosis in the IRF1 gene. In the IRF8 gene, interestingly, we found that three tagSNPs (rs925994 and rs11117415 located in the intron region; rs10514611 located in the 3'UTR) were associated with risk of tuberculosis after Bonferroni correction. Per allele OR was 1.75 (95% CI 1.35 ~ 2.27, P = 0.002), 4.75 (95% CI 2.16 ~ 10.43, P = 0.002) and 3.39 (95% CI 1.60 ~ 7.20, P = 0.015) respectively. Luciferase reporter gene assay showed that the construct that contained the non-risk allele C of rs10514611 showed significantly higher luciferase activity than did the risk T allele (P<0.01), which implied rs10514611 was a potential functional SNP site. Our results indicated that the IRF8 gene might participate in genetic susceptibility to tuberculosis in a Chinese population.
Conflict of interest statement
Figures
References
-
- World Health Organization (2009) Global tuberculosis control: epidemiology, strategy, financing, WHO Report 2009. WHO Geneva.
-
- van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT (2007) Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Cirt Care Med 176: 1281–1288. - PubMed
-
- Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Eng J Med 322: 422–427. - PubMed
-
- Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20: 581–620. - PubMed
-
- Bellamy R (2003) Susceptibility to mycobacterial infections: the importance of host genetics. Genes Immun 4: 4–11. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
