Perfluorinated compounds in umbilical cord blood and adverse birth outcomes
- PMID: 22879996
- PMCID: PMC3411780
- DOI: 10.1371/journal.pone.0042474
Perfluorinated compounds in umbilical cord blood and adverse birth outcomes
Abstract
Background: Previous animal studies have shown that perfluorinated compounds (PFCs) have adverse impacts on birth outcomes, but the results have been inconclusive in humans. We investigated associations between prenatal exposure to perfluorooctanoic acid (PFOA), perfluorooctyl sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA) and birth outcomes.
Methods: In total, 429 mother-infant pairs were recruited from the Taiwan Birth Panel Study (TBPS). Demographic data were obtained by interviewing mothers using a structured questionnaire and birth outcomes were extracted from medical records. Cord blood was collected for PFOA, PFOS, PFNA, and PFUA analysis by ultra-high-performance liquid chromatography/tandem mass spectrometry.
Results: The geometric mean (standard deviation) levels of PFOA, PFOS, PFNA, and PFUA in cord blood plasma were 1.84 (2.23), 5.94 (1.95), 2.36(4.74), and 10.26 (3.07) ng/mL, respectively. Only PFOS levels were found to be inversely associated with gestational age, birth weight, and head circumference [per ln unit: adjusted β (95% confidence interval, CI) = -0.37 (-0.60, -0.13) wks, -110.2 (-176.0, -44.5) gm and -0.25 (-0.46, -0.05) cm]. Additionally, the odds ratio of preterm birth, low birth weight, and small for gestational age increased with PFOS exposure [per ln unit: adjusted odds ratio (OR) (95%CI) = 2.45 (1.47, 4.08), 2.61(0.85, 8.03) and 2.27 (1.25, 4.15)]. When PFOS levels were divided into quartiles, a dose-response relation was observed. However, PFOA, PFNA, and PFUA were not observed to have any convincing impact on birth outcomes.
Conclusions: An adverse dose-dependent association was observed between prenatal PFOS exposure and birth outcomes. However, no associations were found for the other examined PFCs.
Conflict of interest statement
Figures
References
-
- Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, et al. (2007) Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol Sci 99: 366–394. - PubMed
-
- 3M Company (2003) Environmental and health assessment of perfluorooctanesulfonate and its salts. Washington, DC: U.S. Environmental Protection Agency. U.S. EPA docket AR-226–1486.
-
- U.S. Environmental Protection Agency. 2010/2015 PFOA Stewardship Program. Available at: http://www.epa.gov/opptintr/pfoa/stewardship/via the Internet. Accessed.
-
- Kudo N, Suzuki-Nakajima E, Mitsumoto A, Kawashima Y (2006) Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal β-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull 29: 1952–1957. - PubMed
-
- Wolf CJ, Schmid JE, Lau C, Abbott BD (2011) Activation of mouse and human peroxisome proliferator-activated receptor-alpha(PPARα) by perfluoroalkyl acid (PFAAs): further investigation of C4–C12 compounds. Reprod Toxicol. doi: 10.1016/j.reprotox.2011.09.009. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
