Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct;82(4):341-50.
doi: 10.1111/j.1399-0004.2012.01943.x. Epub 2012 Aug 13.

Nerve growth factor and the physiology of pain: lessons from congenital insensitivity to pain with anhidrosis

Affiliations
Review

Nerve growth factor and the physiology of pain: lessons from congenital insensitivity to pain with anhidrosis

Y Indo. Clin Genet. 2012 Oct.

Abstract

Congenital insensitivity to pain with anhidrosis (CIPA) is an autosomal recessive genetic disorder characterized by insensitivity to pain, anhidrosis (the inability to sweat) and mental retardation. Nerve growth factor (NGF) is a well-known neurotrophic factor essential for the survival and maintenance of NGF-dependent neurons, including primary afferent neurons with thin fibers and sympathetic postganglionic neurons, during development. NGF is also considered to be an inflammatory mediator associated with pain, itch and inflammation in adults. CIPA results from loss-of-function mutations in the NTRK1 gene-encoding TrkA (tropomyosin-related kinase A), a receptor tyrosine kinase for NGF. Defects in NGF-TrkA signal transduction lead to the failure of survival of various NGF-dependent neurons. As a result, patients with CIPA lack NGF-dependent neurons. Recent studies have revealed that mutations in the NGFB gene-encoding NGF protein also cause congenital insensitivity to pain. Using the pathophysiology of CIPA as a foundation, this review investigates the ways in which NGF-dependent neurons contribute to interoception, homeostasis and emotional responses and, together with the brain, immune and endocrine systems, play crucial roles in pain, itch and inflammation. The NGF-TrkA system is essential for the establishment of neural networks for interoception, homeostasis and emotional responses. These networks mediate reciprocal communication between the brain and the body in humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms