Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul;1828(7):1579-86.
doi: 10.1016/j.bbamem.2012.07.031. Epub 2012 Aug 3.

Control of low-threshold exocytosis by T-type calcium channels

Affiliations
Free article
Review

Control of low-threshold exocytosis by T-type calcium channels

Norbert Weiss et al. Biochim Biophys Acta. 2013 Jul.
Free article

Abstract

Low-voltage-activated (LVA) T-type Ca²⁺ channels differ from their high-voltage-activated (HVA) homologues by unique biophysical properties. Hence, whereas HVA channels convert action potentials into intracellular Ca²⁺ elevations, T-type channels control Ca²⁺ entry during small depolarizations around the resting membrane potential. They play an important role in electrical activities by generating low-threshold burst discharges that occur during various physiological and pathological forms of neuronal rhythmogenesis. In addition, they mediate a previously unrecognized function in the control of synaptic transmission where they directly trigger the release of neurotransmitters at rest. In this review, we summarize our present knowledge of the role of T-type Ca²⁺ channels in vesicular exocytosis, and emphasize the critical importance of localizing the exocytosis machinery close to the Ca²⁺ source for reliable synaptic transmission. This article is part of a Special Issue entitled: Calcium channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources