Inhibition of Wnt/β-catenin signaling by dexamethasone promotes adipocyte differentiation in mesenchymal progenitor cells, ROB-C26
- PMID: 22886144
- DOI: 10.1007/s00418-012-1007-3
Inhibition of Wnt/β-catenin signaling by dexamethasone promotes adipocyte differentiation in mesenchymal progenitor cells, ROB-C26
Abstract
Dexamethasone (Dex) stimulates the differentiation of mesenchymal progenitor cells into adipocytes and osteoblasts. However, the mechanisms underlying Dex-induced differentiation have not been clearly elucidated. We examined the effect of Dex on the expression and activity of Wnt/β-catenin signal-related molecules in a clonal mesenchymal progenitor cell line, ROB-C26 (C26). Dex induced the mRNA expression of Wnt antagonists, dickkopf-1 (Dkk-1), and Wnt inhibitory factor (WIF)-1. Immunocytochemical analysis showed that the downregulation of β-catenin protein expression by Dex occured concomitantly with the increased expression of the PPARγ protein. Dex decreased phosphorylation of Ser9-GSK3β and expression of active β-catenin protein. To examine the effects of Dex on Wnt/β-catenin activity, we used immunocytochemistry to analyze TCF/LEF-mediated transcription during Dex-induced adipogenesis in Wnt indicator (TOPEGFP) C26 cells. Our results demonstrated that Dex repressed TCF/LEF-mediated transcription, but induced adipocyte differentiation. Treatment with a GSK3β inhibitor attenuated Dex-induced inhibition of TCF/LEF-mediated transcriptional activity, but suppressed Dex-induced adipocyte differentiation, indicating that adipocyte differentiation and inhibition of Wnt/β-catenin activity by Dex are mediated by GSK3β activity. Furthermore, β-catenin knockdown not only suppressed Dex-induced ALP-positive osteoblasts differentiation but also promoted Dex-induced adipocytes differentiation. These results suggest that inhibition of β-catenin expression by Dex promotes the differentiation of mesenchymal progenitor cells into adipocytes.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
