Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 17;18(38):11937-48.
doi: 10.1002/chem.201104020. Epub 2012 Aug 9.

Charge-transfer interactions in tris-donor-tris-acceptor hexaarylbenzene redox chromophores

Affiliations

Charge-transfer interactions in tris-donor-tris-acceptor hexaarylbenzene redox chromophores

Markus Steeger et al. Chemistry. .

Abstract

Symmetric- and asymmetric hexaarylbenzenes (HABs), each substituted with three electron-donor triarylamine redox centers and three electron-acceptor triarylborane redox centers, were synthesized by cobalt-catalyzed cyclotrimerization, thereby forming compounds with six- and four donor-acceptor interactions, respectively. The electrochemical- and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption- and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor-acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak-separation is greatly influenced by the conducting salt, owing to ion-pairing and shielding effects. Consequently, the peak-separations cannot be interpreted in terms of the electronic couplings in the generated mixed-valence species. Transient-absorption spectra, fluorescence-solvatochromism, and absorption spectra show that charge-transfer states from the amine- to the boron centers are generated after optical excitation. The electronic donor-acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge-transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady-state fluorescence-anisotropy measurements, which further indicated symmetry-breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge-transfer character in the donor-acceptor chromophores vanishes, as observed in both the absorption- and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen-bonding interactions between water molecules and the fluoride anions.

PubMed Disclaimer

LinkOut - more resources