Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;50(10):3413-20.
doi: 10.1016/j.fct.2012.07.053. Epub 2012 Aug 4.

Methyl helicterate protects against CCl4-induced liver injury in rats by inhibiting oxidative stress, NF-κB activation, Fas/FasL pathway and cytochrome P4502E1 level

Affiliations

Methyl helicterate protects against CCl4-induced liver injury in rats by inhibiting oxidative stress, NF-κB activation, Fas/FasL pathway and cytochrome P4502E1 level

Xing Lin et al. Food Chem Toxicol. 2012 Oct.

Abstract

This study was designed to investigate the protective effects of the methyl helicterate (MH) isolated from Helicteres angustifolia L. against CCl4-induced hepatotoxicities in rats. Liver injury was induced in rats by the administration of CCl4 twice a week for 8 weeks. Compared with the CCl4 group, MH significantly decreased the activities of ALT, AST and ALP in the serum and increased the activities of SOD, GSH-Px and GSH-Rd in the liver. Moreover, the content of hepatic MDA was reduced. Histological findings also confirmed the anti-hepatotoxic characterisation. In addition, MH significantly inhibited the proinflammatory mediators, such as PGE2, iNOS, COX-2, IL-6, TNF-α and myeloperoxidase (MPO). Further investigation showed that the inhibitory effect of MH on the proinflammatory cytokines was associated with the downregulation of NF-κB. Besides, MH also markedly decreased the levels of Fas/FasL protein expression and the activities of caspase-3/8, as well as the activity of cytochrome P4502E1 (CYP2E1). In brief, the protective effect of MH against CCl4-induced hepatic injury may rely on its ability to reduce oxidative stress, suppress inflammatory responses, protect against Fas/FasL-mediated apoptosis and block CYP2El-mediated CCl4 bioactivation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources