The vesicular glutamate transporter VGLUT3 contributes to protection against neonatal hypoxic stress
- PMID: 22890712
- PMCID: PMC3497571
- DOI: 10.1113/jphysiol.2012.230722
The vesicular glutamate transporter VGLUT3 contributes to protection against neonatal hypoxic stress
Abstract
Neonates respond to hypoxia initially by increasing ventilation, and then by markedly decreasing both ventilation (hypoxic ventilatory decline) and oxygen consumption (hypoxic hypometabolism). This latter process, which vanishes with age, reflects a tight coupling between ventilatory and thermogenic responses to hypoxia. The neurological substrate of hypoxic hypometabolism is unclear, but it is known to be centrally mediated, with a strong involvement of the 5-hydroxytryptamine (5-HT, serotonin) system. To clarify this issue, we investigated the possible role of VGLUT3, the third subtype of vesicular glutamate transporter. VGLUT3 contributes to glutamate signalling by 5-HT neurons, facilitates 5-HT transmission and is expressed in strategic regions for respiratory and thermogenic control. We therefore assumed that VGLUT3 might significantly contribute to the response to hypoxia. To test this possibility, we analysed this response in newborn mice lacking VGLUT3 using anatomical, biochemical, electrophysiological and integrative physiology approaches. We found that the lack of VGLUT3 did not affect the histological organization of brainstem respiratory networks or respiratory activity under basal conditions. However, it impaired respiratory responses to 5-HT and anoxia, showing a marked alteration of central respiratory control. These impairments were associated with altered 5-HT turnover at the brainstem level. Furthermore, under cold conditions, the lack of VGLUT3 disrupted the metabolic rate, body temperature, baseline breathing and the ventilatory response to hypoxia. We conclude that VGLUT3 expression is dispensable under basal conditions but is required for optimal response to hypoxic stress in neonates.
Figures









Similar articles
-
VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety.J Neurosci. 2010 Feb 10;30(6):2198-210. doi: 10.1523/JNEUROSCI.5196-09.2010. J Neurosci. 2010. PMID: 20147547 Free PMC article.
-
Neurochemically and Hodologically Distinct Ascending VGLUT3 versus Serotonin Subsystems Comprise the r2-Pet1 Median Raphe.J Neurosci. 2021 Mar 24;41(12):2581-2600. doi: 10.1523/JNEUROSCI.1667-20.2021. Epub 2021 Feb 5. J Neurosci. 2021. PMID: 33547164 Free PMC article.
-
Vesicular Glutamatergic Transmission in Noise-Induced Loss and Repair of Cochlear Ribbon Synapses.J Neurosci. 2019 Jun 5;39(23):4434-4447. doi: 10.1523/JNEUROSCI.2228-18.2019. Epub 2019 Mar 29. J Neurosci. 2019. PMID: 30926748 Free PMC article.
-
Axonal Segregation and Role of the Vesicular Glutamate Transporter VGLUT3 in Serotonin Neurons.Front Neuroanat. 2016 Apr 12;10:39. doi: 10.3389/fnana.2016.00039. eCollection 2016. Front Neuroanat. 2016. PMID: 27147980 Free PMC article.
-
Respiratory and cardiovascular responses to hypoxemia and the effects of anesthesia.Int Anesthesiol Clin. 1981 Fall;19(3):85-122. doi: 10.1097/00004311-198119030-00008. Int Anesthesiol Clin. 1981. PMID: 7026455 Review.
Cited by
-
A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour.Int J Mol Sci. 2022 Jan 12;23(2):790. doi: 10.3390/ijms23020790. Int J Mol Sci. 2022. PMID: 35054976 Free PMC article. Review.
-
Distribution of vesicular glutamate transporters in the human brain.Front Neuroanat. 2015 Mar 5;9:23. doi: 10.3389/fnana.2015.00023. eCollection 2015. Front Neuroanat. 2015. PMID: 25798091 Free PMC article.
-
Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation.Mol Neurobiol. 2020 Jul;57(7):3118-3142. doi: 10.1007/s12035-020-01912-7. Epub 2020 May 30. Mol Neurobiol. 2020. PMID: 32474835 Free PMC article. Review.
-
Intermittent severe hypoxia induces plasticity within serotonergic and catecholaminergic neurons in the neonatal rat ventrolateral medulla.J Appl Physiol (1985). 2016 Jun 1;120(11):1277-87. doi: 10.1152/japplphysiol.00048.2016. Epub 2016 Mar 10. J Appl Physiol (1985). 2016. PMID: 26968026 Free PMC article.
-
Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice.Cell Mol Neurobiol. 2018 Jan;38(1):37-52. doi: 10.1007/s10571-017-0528-7. Epub 2017 Aug 3. Cell Mol Neurobiol. 2018. PMID: 28776199 Free PMC article. Review.
References
-
- Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D, Poirel O, Miot S, Gras C, Gardier AM, Gallego J, Hamon M, Lanfumey L, Gasnier B, Giros B, El Mestikawy S. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J Neurosci. 2010;30:2198–2210. - PMC - PubMed
-
- Ballanyi K, Onimaru H, Homma I. Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol. 1999;59:583–634. - PubMed
-
- Bissonnette JM. Mechanisms regulating hypoxic respiratory depression during fetal and postnatal life. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1391–1400. - PubMed
-
- Bollen B, Bouslama M, Matrot B, Rotrou Y, Vardon G, Lofaso F, Van den Bergh O, D’Hooge R, Gallego J. Cold stimulates the behavioral response to hypoxia in newborn mice. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1503–1511. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases