Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone
- PMID: 22890968
- DOI: 10.1002/cssc.201200111
Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone
Abstract
γ-Valerolactone (GVL) has been identified as a potential intermediate for the production of fuels and chemicals based on renewable feedstocks. Numerous heterogeneous catalysts have been used for GVL production, alongside a range of reaction setups. This Minireview seeks to outline the development of heterogeneous catalysts for the targeted conversion of levulinic acid (LA) to GVL. Emphasis has been placed on discussing specific systems, including heterogeneous noble and base metal catalysts, transfer hydrogenation, and application of scCO₂ as reaction medium, with the aim of critically highlighting both the achievements and remaining challenges associated with this field.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.ChemSusChem. 2016 Aug 23;9(16):2037-47. doi: 10.1002/cssc.201600517. Epub 2016 Jul 28. ChemSusChem. 2016. PMID: 27464831 Review.
-
Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.ChemSusChem. 2010 Oct 25;3(10):1172-5. doi: 10.1002/cssc.201000163. ChemSusChem. 2010. PMID: 20872402 No abstract available.
-
Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.J Colloid Interface Sci. 2019 May 1;543:52-63. doi: 10.1016/j.jcis.2019.02.036. Epub 2019 Feb 11. J Colloid Interface Sci. 2019. PMID: 30779993
-
Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.Chem Commun (Camb). 2015 Sep 28;51(75):14199-202. doi: 10.1039/c5cc02993g. Chem Commun (Camb). 2015. PMID: 26258183
-
The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid.Int J Mol Sci. 2023 Jan 26;24(3):2443. doi: 10.3390/ijms24032443. Int J Mol Sci. 2023. PMID: 36768767 Free PMC article. Review.
Cited by
-
Polymeric Ruthenium Porphyrin-Functionalized Carbon Nanotubes and Graphene for Levulinic Ester Transformations into γ-Valerolactone and Pyrrolidone Derivatives.ACS Omega. 2017 Jul 7;2(7):3228-3240. doi: 10.1021/acsomega.7b00427. eCollection 2017 Jul 31. ACS Omega. 2017. PMID: 31457649 Free PMC article.
-
Functionalized Biochars as Supports for Ru/C Catalysts: Tunable and Efficient Materials for γ-Valerolactone Production.Nanomaterials (Basel). 2023 Mar 22;13(6):1129. doi: 10.3390/nano13061129. Nanomaterials (Basel). 2023. PMID: 36986022 Free PMC article.
-
γ-Butyrolactone Synthesis from Allylic Alcohols Using the CO2 Radical Anion.Precis Chem. 2024 Feb 16;2(3):88-95. doi: 10.1021/prechem.3c00117. eCollection 2024 Mar 25. Precis Chem. 2024. PMID: 39474029 Free PMC article.
-
Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization.Sci Rep. 2016 Jul 5;6:28898. doi: 10.1038/srep28898. Sci Rep. 2016. PMID: 27377401 Free PMC article.
-
Ru Single Atoms on One-Dimensional CF@g-C3N4 Hierarchy as Highly Stable Catalysts for Aqueous Levulinic Acid Hydrogenation.Materials (Basel). 2022 Oct 25;15(21):7464. doi: 10.3390/ma15217464. Materials (Basel). 2022. PMID: 36363056 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources