Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;11(10):2254-64.
doi: 10.1158/1535-7163.MCT-12-0311. Epub 2012 Aug 13.

Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation

Affiliations

Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation

Sun Mi Kim et al. Mol Cancer Ther. 2012 Oct.

Abstract

The secondary T790M mutation in epidermal growth factor receptor (EGFR) is the major mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) in non-small cell lung cancer (NSCLC). Although irreversible EGFR TKIs, such as afatinib or dacomitinib, have been introduced to overcome the acquired resistance, they showed a limited efficacy in NSCLC with T790M. Herein, we identified the novel de novo resistance mechanism to irreversible EGFR TKIs in H1975 and PC9-GR cells, which are NSCLC cells with EGFR T790M. Afatinib activated interleukin-6 receptor (IL-6R)/JAK1/STAT3 signaling via autocrine IL-6 secretion in both cells. Inhibition of IL-6R/JAK1/STAT3 signaling pathway increased the sensitivity to afatinib. Cancer cells showed stronger STAT3 activation and enhanced resistance to afatinib in the presence of MRC5 lung fibroblasts. Blockade of IL-6R/JAK1 significantly increased the sensitivity to afatinib through inhibition of afatinib-induced STAT3 activation augmented by the interaction with fibroblasts, suggesting a critical role of paracrine IL-6R/JAK1/STAT3 loop between fibroblasts and cancer cells in the development of drug resistance. The enhancement of afatinib sensitivity by inhibition of IL-6R/JAK1/STAT3 signaling was confirmed in in vivo PC9-GR xenograft model. Similar to afatinib, de novo resistance to dacomitinib in H1975 and PC9-GR cells was also mediated by dacomitinib-induced JAK1/STAT3 activation. Taken together, these findings suggest that IL-6R/JAK1/STAT3 signaling can be a potential therapeutic target to enhance the efficacy of irreversible EGFR TKIs in patients with EGFR T790M.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms