Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;8(1):13-7.
doi: 10.14797/mdcj-8-1-13.

Design of nanovectors for therapy and imaging of cardiovascular diseases

Affiliations

Design of nanovectors for therapy and imaging of cardiovascular diseases

Omolola Eniola-Adefeso et al. Methodist Debakey Cardiovasc J. 2012 Jan.

Abstract

Cardiovascular diseases are widely prevalent in western societies, and their associated costs number in the billions of dollars and affect millions of patients each year. Nanovectors targeted to tissues involved in cardiovascular diseases offer great opportunities to improve cardiovascular treatment through their imaging and drug delivery capabilities. Vascular-targeted imaging particles may permit the early identification of atherosclerosis, discriminate between stable and vulnerable atherosclerotic plaques, or guide surgeons as they work on fragile vasculature. Tailored therapeutic nanoparticles may provide safer, more efficient and effective intervention through localization and release of encapsulated therapeutics. Nanovector design involves numerous considerations such as fabrication material, particle size, and surface-modification with ligands for targeting and increasing blood circulation times. Complex blood rheology may affect the efficiency with which dissimilarsized particles target ligand receptors associated with disease. Additionally, the intended use of a nanovector is a critical factor in its design as some materials with poor drug-loading qualities or release kinetics may be suitable for imaging purposes only. Overall, vectors targeted to the vasculature will need to be efficient in avoiding blood clearance, honing to the target location, and binding at the desired site.

Keywords: atheroma; atherosclerosis; contrast agent; liposomes; micelles; molecular imaging; nanovectors; phospholipids; stroke; vascular targeting.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Figure 2.
Figure 2.
Figure 3.
Figure 3.

Similar articles

Cited by

References

    1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics — 2010 update: a report from the American Heart Association. Circulation. 2010 Feb 23;121(7):e46–e215.. - PubMed
    1. Ambrose JA, Winters SL, Arora RR, Haft JI, Goldstein J, Rentrop KP, et al. Coronary angiographic morphology in myocardial infarction: a link between the pathogenesis of unstable angina and myocardial infarction. J Am Coll Cardiol. 1985;6(6):1233–8.. - PubMed
    1. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988 Jul;12(1):56–62.. - PubMed
    1. Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988 Dec;9(12):1317–23.. - PubMed
    1. Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 1992 Mar 15;69(8):729–32.. - PubMed

Publication types