Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 19;533(2):255-62.
doi: 10.1016/0006-8993(90)91347-j.

Interactions of visual and auditory mossy fiber inputs in the paraflocculus of the rat: a gating action of multimodal inputs

Affiliations
Free article

Interactions of visual and auditory mossy fiber inputs in the paraflocculus of the rat: a gating action of multimodal inputs

S A Azizi et al. Brain Res. .
Free article

Abstract

We have demonstrated previously that visual and auditory inputs reach the rat paraflocculus via dorsolateral pontine gray from the secondary regions of the visual and auditory cortices. It has also been demonstrated that mossy fiber responses can be evoked to physiological acoustic stimuli in unanesthetized preparations. In this study, we investigated the interaction of auditory and visual inputs in the paraflocculus. Activity of parafloccular neurons was recorded in immobilized, locally anesthetized hooded rats. Selected images and tones were presented to animals. Orientation, position, and velocity of visual stimuli and different parameters of acoustic stimuli were controlled by a computer. Visual and auditory stimuli were also presented in combination or in different temporal sequences. We discovered that visual and auditory stimuli have coextensive termination zones in paraflocculus, and influence the same neurons in 60% of the cases. Combined auditory and visual stimuli produced synergistic responses in parafloccular neurons in comparison with single modality stimuli. Augmentation of responses could be observed even when one of the stimuli was subthreshold and did not alter per se the neuronal activity. Our findings suggest that within the cerebro-cerebellar system, subthreshold inputs are capable of powerful control over the neuronal activity and may alter responses to subsequent stimuli when properly biased by inputs from paired modalities.

PubMed Disclaimer

LinkOut - more resources