Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;61(2):197-203.
doi: 10.1053/j.ajkd.2012.07.007. Epub 2012 Aug 11.

GFR estimation using standardized serum cystatin C in Japan

Collaborators, Affiliations

GFR estimation using standardized serum cystatin C in Japan

Masaru Horio et al. Am J Kidney Dis. 2013 Feb.

Abstract

Background: Recently, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) developed glomerular filtration rate (GFR)-estimating equations based on standardized serum cystatin C (CKD-EPI(cys)) and standardized serum creatinine plus standardized serum cystatin C (CKD-EPI(cr-cys)). We developed new GFR-estimating equations based on standardized cystatin C for a Japanese population and compared their accuracy with the CKD-EPI equations.

Study design: Accuracy of diagnostic test study.

Setting & participants: 413 (development data set) and 350 individuals (validation data set).

Index test: CKD-EPI(cys); CKD-EPI(cr-cys); modifications to CKD-EPI(cys) and CKD-EPI(cr-cys) using Japanese coefficients; and newly developed Japanese eGFR equations based on standardized serum cystatin C (Eq(cys)), cystatin C with a nonrenal factor reflecting hypothesized extrarenal elimination (Eq(cys+nonrenal)), and creatinine in combination with cystatin C (Eq(cr-cys)). Standardized cystatin C values were determined by a colloidal gold immunoassay traceable to the international certified reference material ERM-DA471/IFCC.

Reference test: Measured GFR by inulin renal clearance.

Results: In a development data set, we calculated Japanese coefficients for CKD-EPI(cys) and CKD-EPI(cr-cys) of 0.977 (95% CI, 0.853-1.002) and 0.908 (95% CI, 0.889-0.928), respectively. In a validation data set, we compared CKD-EPI(cys), Eq(cys), and Eq(cys+nonrenal) with each other. Bias and accuracy were not significantly different among the 3 equations. The precision of CKD-EPI(cys) was significantly better than for Eq(cys) (P = 0.007) and not significantly different from Eq(cys+nonrenal) (P = 0.6). We then compared 0.908 × CKD-EPI(cr-cys), Eq(cr-cys), and Eq(average) (the average value of Eq(cr) [previous Japanese equation based on standardized serum creatinine] and Eq(cys+nonrenal)) with each other in the validation data set. Bias and accuracy were not significantly different among the 3 equations. The precision of 0.908 × CKD-EPI(cr-cys) was significantly better than for Eq(cr-cys) (P = 0.004) and not significantly different from Eq(average) (P = 0.06).

Limitations: Limited number of participants with measured GFR >90 mL/min/1.73 m(2). Extrarenal elimination of cystatin C was not measured.

Conclusions: CKD-EPI(cys) performed well in Japanese individuals, suggesting that equations based on serum cystatin C could be used in patients with different races without modification. Accounting for extrarenal elimination of cystatin C may improve the performance of estimating equations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources