Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits
- PMID: 22894754
- PMCID: PMC3462741
- DOI: 10.1021/ja300984b
Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits
Abstract
Catalyzed hairpin assembly (CHA) is a robust enzyme-free signal-amplification reaction that has a wide range of potential applications, especially in biosensing. Although most studies of the analytical applications of CHA have focused on the measurement of concentrations of biomolecules, we show here that CHA can also be used to probe the spatial organization of biomolecules such as single-stranded DNA. The basis of such detection is the fact that a DNA structure that brings a toehold and a branch-migration domain into close proximity can catalyze the CHA reaction. We quantitatively studied this phenomenon and applied it to the detection of domain reorganization that occurs during DNA self-assembly processes such as the hybridization chain reaction (HCR). We also show that CHA circuits can be designed to detect certain types of hybridization defects. This principle allowed us to develop a "signal on" assay that can simultaneously respond to multiple types of mutations in a DNA strand in one simple reaction, which is of great interest in genotyping and molecular diagnostics. These findings highlight the potential impacts of DNA circuitry on DNA nanotechnology and provide new tools for further development of these fields.
Figures
Similar articles
-
Spatial organization based reciprocal switching of enzyme-free nucleic acid circuits.Chem Commun (Camb). 2016 Oct 27;52(88):13043-13046. doi: 10.1039/c6cc07153h. Chem Commun (Camb). 2016. PMID: 27757452
-
Triggered and catalyzed self-assembly of hyperbranched DNA structures for logic operations and homogeneous CRET biosensing of microRNA.Chem Commun (Camb). 2016 Apr 7;52(31):5455-8. doi: 10.1039/c6cc01308b. Chem Commun (Camb). 2016. PMID: 27010350
-
Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing.Langmuir. 2018 Dec 11;34(49):14851-14857. doi: 10.1021/acs.langmuir.8b01576. Epub 2018 Aug 8. Langmuir. 2018. PMID: 30044098
-
Applications of Catalytic Hairpin Assembly Reaction in Biosensing.Small. 2019 Oct;15(42):e1902989. doi: 10.1002/smll.201902989. Epub 2019 Sep 16. Small. 2019. PMID: 31523917 Review.
-
Chemical and Biological Sensing Using Hybridization Chain Reaction.ACS Sens. 2018 May 25;3(5):878-902. doi: 10.1021/acssensors.8b00208. Epub 2018 May 16. ACS Sens. 2018. PMID: 29733201 Review.
Cited by
-
A Label-Free Fluorescent DNA Machine for Sensitive Cyclic Amplification Detection of ATP.Materials (Basel). 2018 Nov 29;11(12):2408. doi: 10.3390/ma11122408. Materials (Basel). 2018. PMID: 30501020 Free PMC article.
-
Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction.Chem Sci. 2019 Aug 29;10(42):9758-9767. doi: 10.1039/c9sc02281c. eCollection 2019 Nov 14. Chem Sci. 2019. PMID: 32055345 Free PMC article.
-
DNA transducer-triggered signal switch for visual colorimetric bioanalysis.Sci Rep. 2015 Jun 10;5:11190. doi: 10.1038/srep11190. Sci Rep. 2015. PMID: 26060886 Free PMC article.
-
Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects.RSC Adv. 2022 Sep 9;12(39):25786-25806. doi: 10.1039/d2ra03630d. eCollection 2022 Sep 5. RSC Adv. 2022. PMID: 36199327 Free PMC article. Review.
-
Sensitive fluorometric determination of platelet-derived growth factor BB and avian influenza A virus DNA via dual signal amplification using the hybridization chain reaction and glucose oxidase assisted recycling.Mikrochim Acta. 2019 Feb 2;186(3):155. doi: 10.1007/s00604-019-3285-0. Mikrochim Acta. 2019. PMID: 30712102
References
-
- Liu J, Cao Z, Lu Y. Chem. Rev. 2009;109:1948–1998. - PMC - PubMed
- Stojanovic MN, Landry DW. J. Am. Chem. Soc. 2002;124:9678–9679. - PubMed
- Cho EJ, Yang LT, Levy M, Ellington AD. J. Am. Chem. Soc. 2005;127:2022–2023. - PubMed
- Lubin AA, Plaxco KW. Accounts Chem. Res. 2010;43:496–505. - PMC - PubMed
- Stojanovic MN, Stefanovic D. Nat. Biotechnol. 2003;21:1069–1074. - PubMed
- Zhang L, Zhu J, Li T, Wang E. Anal. Chem. 2011;83:8871–8876. - PubMed
-
- Dirks RM, Pierce NA. Proc. Natl. Acad. Sci. USA. 2004;101:15275–15278. - PMC - PubMed
- Qian L, Winfree E, Bruck J. Nature. 2011;475:368–372. - PubMed
- Zhang DY. Science. 2007;318:1121–1125. - PubMed
- Yin P, Choi HMT, Calvert CR, Pierce NA. Nature. 2008;451:318–322. - PubMed
- Liu QH, Wang LM, Frutos AG, Condon AE, Corn RM, Smith LM. Nature. 2000;403:175–179. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
