Unparalleled control of neural activity using orthogonal pharmacogenetics
- PMID: 22896806
- PMCID: PMC3419455
- DOI: 10.1021/cn300053q
Unparalleled control of neural activity using orthogonal pharmacogenetics
Abstract
Studying the functional architecture of the brain requires technologies to precisely measure and perturb the activity of specific neural cells and circuits in live animals. Substantial progress has been made in recent years to develop and apply such tools. In particular, technologies that provide precise control of activity in genetically defined populations of neurons have enabled the study of causal relationships between and among neural circuit elements and behavioral outputs. Here, we review an important subset of such technologies, in which neurons are genetically engineered to respond to specific chemical ligands that have no interfering pharmacological effect in the central nervous system. A rapidly expanding set of these "orthogonal pharmacogenetic" tools provides a unique combination of genetic specificity, functional diversity, spatiotemporal precision, and potential for multiplexing. We review the main classes of orthogonal pharmacogenetic technologies, including neuroreceptors to control neuronal excitability, systems to control gene transcription and translation, and general constructs to control protein-protein interactions, enzymatic function, and protein stability. We describe the key performance characteristics informing the use of these technologies in the brain, and potential directions for improvement and expansion of the orthogonal pharmacogenetics toolkit to enable more sophisticated systems neuroscience.
Figures


Similar articles
-
Optogenetics and pharmacogenetics: principles and applications.Am J Physiol Regul Integr Comp Physiol. 2017 Dec 1;313(6):R633-R645. doi: 10.1152/ajpregu.00091.2017. Epub 2017 Aug 9. Am J Physiol Regul Integr Comp Physiol. 2017. PMID: 28794102 Free PMC article. Review.
-
Chemogenetic tools to interrogate brain functions.Annu Rev Neurosci. 2014;37:387-407. doi: 10.1146/annurev-neuro-071013-014048. Epub 2014 Jun 16. Annu Rev Neurosci. 2014. PMID: 25002280 Review.
-
Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo.Curr Opin Neurobiol. 2007 Oct;17(5):581-6. doi: 10.1016/j.conb.2007.10.002. Epub 2007 Nov 28. Curr Opin Neurobiol. 2007. PMID: 18054219 Free PMC article.
-
Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action.Behav Brain Res. 2021 May 21;406:113234. doi: 10.1016/j.bbr.2021.113234. Epub 2021 Mar 16. Behav Brain Res. 2021. PMID: 33741409 Free PMC article. Review.
-
A physiological perspective on the neuroscience of eating.Physiol Behav. 2014 Sep;136:3-14. doi: 10.1016/j.physbeh.2014.03.022. Epub 2014 Apr 2. Physiol Behav. 2014. PMID: 24704192 Review.
Cited by
-
Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain.Gene Ther. 2014 Mar;21(3):233-41. doi: 10.1038/gt.2013.75. Epub 2014 Jan 9. Gene Ther. 2014. PMID: 24401836 Free PMC article.
-
Principles of designing interpretable optogenetic behavior experiments.Learn Mem. 2015 Mar 18;22(4):232-8. doi: 10.1101/lm.038026.114. Print 2015 Apr. Learn Mem. 2015. PMID: 25787711 Free PMC article. Review.
-
Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina.PLoS Biol. 2019 Apr 1;17(4):e3000200. doi: 10.1371/journal.pbio.3000200. eCollection 2019 Apr. PLoS Biol. 2019. PMID: 30933967 Free PMC article.
-
Hypothalamic survival circuits: blueprints for purposive behaviors.Neuron. 2013 Mar 6;77(5):810-24. doi: 10.1016/j.neuron.2013.02.018. Neuron. 2013. PMID: 23473313 Free PMC article. Review.
-
Conduits of life's spark: a perspective on ion channel research since the birth of neuron.Neuron. 2013 Oct 30;80(3):658-74. doi: 10.1016/j.neuron.2013.10.040. Neuron. 2013. PMID: 24183018 Free PMC article. Review.
References
-
- Magnus C. J.; Lee P. H.; Atasoy D.; Su H. H.; Looger L. L.; Sternson S. M. (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047), 1292–1296. - PMC - PubMed
- Krashes M. J.; Koda S.; Ye C.; Rogan S. C.; Adams A. C.; Cusher D. S.; Maratos-Flier E.; Roth B. L.; Lowell B. B. (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121(4), 1424–1428. - PMC - PubMed
-
- Hatten M. E.; Heintz N. (2005) Large-scale genomic approaches to brain development and circuitry. Annu. Rev. Neurosci. 28, 89–108. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources