The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis
- PMID: 22901034
- DOI: 10.1089/ars.2012.4855
The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis
Abstract
Significance: The introduction of disulfide bonds in proteins of the mitochondrial intermembrane space (IMS) is fundamental for their folding and assembly. This oxidative folding process depends on the disulfide donor/import receptor Mia40 and the flavin adenine dinucleotide oxidase Erv1 and concerns proteins involved in mitochondrial biogenesis, respiratory complex assembly, and metal transfer.
Recent advances: The recently determined structural basis of the interaction between Mia40 and some substrates provides a framework for the electron transfer process. A possible proofreading role for the cellular reductant glutathione has been proposed, while other studies suggest the association of Mia40 and Erv1 in dynamic multiprotein complexes in the IMS.
Critical issues: The association of Mia40 with Erv1 and substrates in large multiprotein complexes is critical. Completion of substrate folding by additional disulfide bonds after initial binding to Mia40 remains unclear. Furthermore, a more general role for Mia40 in recognizing substrates targeted to other compartments, or even without specific cysteine motifs, remains an intriguing possibility.
Future directions: Dissecting a regulatory role of intramitochondrial protein complex organization and small redox-active molecules will be crucial for understanding oxidative folding in the IMS. This should have an impact on the physiology of human cells, as disease-linked mutations of key components of this process have been manifested, and their expression in stem cells appears crucial for development.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
