Pyridine nucleotide regulation of cardiac intermediary metabolism
- PMID: 22904042
- DOI: 10.1161/CIRCRESAHA.111.246371
Pyridine nucleotide regulation of cardiac intermediary metabolism
Abstract
The pyridine nucleotides NAD(+) and NADP(+) play a pivotal role in regulating intermediary metabolism in the heart. The intracellular NAD(+)/NADH ratio controls flux through various dehydrogenase enzymes involved in both anaerobic and aerobic metabolism and also regulates posttranslational protein modification. The intracellular NADP(+)/NADPH ratio controls flux through the pentose phosphate pathway (PPP) and the polyol pathway, while also regulating ion channel function and oxidative stress. Not only does the NAD(+)/NADH ratio regulate the rates of ATP production, it can also modify energy substrate preference. For instance, in many forms of heart disease a greater contribution from fatty acids for oxidative energy metabolism increases fatty acid β-oxidation-derived NADH, which can activate pyruvate dehydrogenase (PDH) kinase isoforms that inhibit PDH and subsequent glucose oxidation. As such, novel therapies that overcome fatty acid β-oxidation-induced inhibition of PDH improve cardiac efficiency and subsequent function during ischemia/reperfusion and in heart failure. Furthermore, recent studies have implicated a pivotal role for increased PPP-derived NADPH in mediating oxidative stress observed in heart failure. In this article, we review the multiple actions of NAD(+)/NADH and NADP(+)/NADPH in regulating intermediary metabolism in the heart. A better understanding of the roles of NAD(+)/NADH and NADP(+)/NADPH in cellular physiology and pathology could potentially be used to exploit pyridine nucleotide modification in the treatment of a number of different forms of heart disease.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
