Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug 17;111(5):628-41.
doi: 10.1161/CIRCRESAHA.111.246371.

Pyridine nucleotide regulation of cardiac intermediary metabolism

Affiliations
Free article
Review

Pyridine nucleotide regulation of cardiac intermediary metabolism

John R Ussher et al. Circ Res. .
Free article

Abstract

The pyridine nucleotides NAD(+) and NADP(+) play a pivotal role in regulating intermediary metabolism in the heart. The intracellular NAD(+)/NADH ratio controls flux through various dehydrogenase enzymes involved in both anaerobic and aerobic metabolism and also regulates posttranslational protein modification. The intracellular NADP(+)/NADPH ratio controls flux through the pentose phosphate pathway (PPP) and the polyol pathway, while also regulating ion channel function and oxidative stress. Not only does the NAD(+)/NADH ratio regulate the rates of ATP production, it can also modify energy substrate preference. For instance, in many forms of heart disease a greater contribution from fatty acids for oxidative energy metabolism increases fatty acid β-oxidation-derived NADH, which can activate pyruvate dehydrogenase (PDH) kinase isoforms that inhibit PDH and subsequent glucose oxidation. As such, novel therapies that overcome fatty acid β-oxidation-induced inhibition of PDH improve cardiac efficiency and subsequent function during ischemia/reperfusion and in heart failure. Furthermore, recent studies have implicated a pivotal role for increased PPP-derived NADPH in mediating oxidative stress observed in heart failure. In this article, we review the multiple actions of NAD(+)/NADH and NADP(+)/NADPH in regulating intermediary metabolism in the heart. A better understanding of the roles of NAD(+)/NADH and NADP(+)/NADPH in cellular physiology and pathology could potentially be used to exploit pyridine nucleotide modification in the treatment of a number of different forms of heart disease.

PubMed Disclaimer

Publication types

LinkOut - more resources