Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 20:7:41.
doi: 10.1186/1750-1326-7-41.

Mass spectrometry quantification of clusterin in the human brain

Affiliations

Mass spectrometry quantification of clusterin in the human brain

Junjun Chen et al. Mol Neurodegener. .

Abstract

Background: The multifunctional glycoprotein clusterin has been associated with late-onset Alzheimer's disease (AD). Further investigation to define the role of clusterin in AD phenotypes would be aided by the development of techniques to quantify level, potential post-translational modifications, and isoforms of clusterin. We have developed a quantitative technique based on multiple reaction monitoring (MRM) mass spectrometry to measure clusterin in human postmortem brain tissues.

Results: A stable isotope-labeled concatenated peptide (QconCAT) bearing selected peptides from clusterin was expressed with an in vitro translation system and purified. This clusterin QconCAT was validated for use as an internal standard for clusterin quantification using MRM mass spectrometry. Measurements were performed on the human postmortem frontal and temporal cortex from control and severe AD cases. During brain tissues processing, 1% SDS was used in the homogenization buffer to preserve potential post-translational modifications of clusterin. However, MRM quantifications in the brain did not suggest phosphorylation of Thr(393), Ser(394), and Ser(396) residues reported for clusterin in serum. MRM quantifications in the frontal cortex demonstrated significantly higher (P < 0.01) level of clusterin in severe AD group (39.1 ± 9.1 pmol/mg tissue protein) in comparison to control group (25.4 ± 4.4 pmol/mg tissue protein). In the temporal cortex, the clusterin levels were not significantly different, 29.0 ± 7.9 pmol/mg tissue protein and 28.0 ± 8.4 pmol/mg tissue protein in control and severe AD groups, respectively.

Conclusions: The proposed protocol is a universal quantitative technique to assess expression level of clusterin. It is expected that application of this protocol to quantification of various clusterin isoforms and potential post-translational modifications will be helpful in addressing the role of clusterin in AD.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Design, expression, and characterization of clusterin QconCAT. (A). Clusterin QconCAT includes five Q peptides (shown in green) with 6-amino acid long flanking regions (shown in yellow) concatenated into the sequence with N-terminal Met and C-terminal His6-tag. (B) Coomassie R250 stained clusterin QconCAT after 15% polyacrylamide gel separation. (C) Stable isotope incorporation into the clusterin. MRM spectra for two representative transitions per Q1, Q4, and Q5 peptides are shown. The pair transitions for light (unlabeled) and heavy (labeled) form of each Q peptide are color coordinated. Isotope incorporation factor for clusterin QconCAT was calculated based on combined data for all three peptides and presented as mean ± SD.
Figure 2
Figure 2
Representative standard curves for Q1, Q4, and Q5 peptides. The area ratio of heavy to light peaks for a selected transition was plotted versus suplemented clusterin QconCAT amount for each Q peptide. Transitions: Q1-t3 is 697.35/1035.51 and 702.36/1045.52; Q4-t1 is 644.82/602.30 and 649.83/612.30; Q5-t1 is 772.06/507.80 and 774.74/511.80.

Similar articles

Cited by

References

    1. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A. et al.Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009;41:1088–1093. - PMC - PubMed
    1. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B. et al.Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009;41:1094–1099. - PubMed
    1. May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron. 1990;5:831–839. - PubMed
    1. Lidstrom AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K. Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer's disease. Exp Neurol. 1998;154:511–521. - PubMed
    1. Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, Blennow K. Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int. 2006;48:718–728. - PubMed

Publication types