Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 18;28(37):13512-7.
doi: 10.1021/la302583a. Epub 2012 Sep 4.

Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis

Affiliations

Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis

Xinming Li et al. Langmuir. .

Abstract

Here we report the examination of two convenient strategies, the use of a d-amino acid residue or a glycoside segment, for increasing the proteolytic resistance of supramolecular hydrogelators based on small peptides. Our results show that the introduction of d-amino acid or glycoside to the peptides significantly increases the resistance of the hydrogelators against proteinase K, a powerful endopeptidase. The insertion of d-amino acid in the peptide backbone, however, results relatively low storage moduli of the hydrogels, likely due to the disruption of the superstructures of the molecular assembly. In contrast, the introduction of a glycoside to the C-terminal of peptide enhances the biostability of the hydrogelators without the significant decrease of the storage moduli of the hydrogels. This work suggests that the inclusion of a simple glycogen in hydrogelators is a useful approach to increase their biostability, and the gained understanding from the work may ultimately lead to development of hydrogels of functional peptides for biomedical applications that require long-term biostability.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Optical images of the hydrogels of (A) 2 (1.0 wt%, pH 7.0); (B) 3 (1.5 wt%, pH 7.0); (C) 4 (1.5 wt%, pH 7.0); (D) 5 (3.0 wt%, pH 4.0); (E) 6 (3.0 wt%, pH 4.0); and (F) 7 (3.0 wt%, pH 4.0).
Figure 2
Figure 2
Transmission electron micrograph (TEM) of the negative stained hydrogels formed by (A) 2; (B) 3; (C) 4; (D) 5; (E) 6; and (F) 7 shown in Figure 1 (scale bar = 100 nm).
Figure 3
Figure 3
The digestions of hydrogelators (A) 1, 2, 3 and 4; and (B) 5, 6 and 7 over the course of the incubation with proteinase K for 24 hours. All the hydrogelators are at the concentrations of 0.2 wt%.
Figure 4
Figure 4
(A) Strain dependence of the dynamic storage moduli (G’) and the loss moduli (G”) of the hydrogels of 2, 3 and 4 shown in Figure 1; (B) strain dependence of the dynamic storage moduli (G’) and the loss moduli (G”) of the hydrogels of 5, 6 and 7; (C) frequency dependence of the dynamic storage moduli (G’) and the loss moduli (G”) of the hydrogels of 2, 3 and 4 shown in Figure 1; (D) frequency dependence of the dynamic storage moduli (G’) and the loss moduli (G”) of the hydrogels of 5, 6 and 7 shown in Figure 1.
Scheme 1
Scheme 1
The molecular structures and the modular representations of the hydrogelators.

Similar articles

Cited by

References

    1. Terech P, Weiss RG. Chem Rev. 1997;97:3133–3159. - PubMed
    2. Estroff LA, Hamilton AD. Chem Rev. 2004;104:1201–1217. - PubMed
    3. Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK. J Am Chem Soc. 2008;130:9113–9121. - PubMed
    4. Sahoo P, Adarsh NN, Chacko GE, Raghavan SR, Puranik VG, Dastidar P. Langmuir. 2009;25:8742–8750. - PubMed
    5. Suzuki M, Hanabusa K. Chem Soc Rev. 2009;38:967–975. - PubMed
    6. Chen L, Morris K, Laybourn A, Elias D, Hicks MR, Rodger A, Serpell L, Adams DJ. Langmuir. 2010;26:5232–5242. - PubMed
    7. Yan C, Pochan DJ. Chem Soc Rev. 2010;39:3528–3540. - PMC - PubMed
    8. Dawn A, Shiraki T, Haraguchi S, Tamaru S, Shinkai S. Chem Asian J. 2011;6:266–282. - PubMed
    9. Steed JW. Chem Commun. 2011;47:1379–1383. - PubMed
    10. Das D, Kar T, Das PK. Soft Matter. 2012;8:2348–2365.
    11. Yan C, Mackay ME, Czymmek K, Nagarkar RP, Schneider JP, Pochan DJ. Langmuir. 2012;28:6076–6087. - PMC - PubMed
    1. Zhang SG. Nat Biotechnol. 2003;21:1171–1178. - PubMed
    1. Rajagopal K, Schneider JP. Curr Opin Struct Biol. 2004;14:480–486. - PubMed
    2. Ulijn RV, Smith AM. Chem Soc Rev. 2008;37:664–675. - PubMed
    3. Yang Z, Liang G, Xu B. Acc Chem Res. 2008;41:315–326. - PubMed
    4. Cui H, Webber MJ, Stupp SI. Biopolymers. 2010;94:1–18. - PMC - PubMed
    5. Matson JB, Stupp SI. Chem Commun. 2012;48:26–33. - PMC - PubMed
    1. Yang Z, Xu B. J Mater Chem. 2007;17:2385–2393.
    1. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Science. 2004;303:1352–1355. - PubMed
    2. Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV. Adv Mater. 2006;18:611–+.
    3. Shekaran A, Garcia AJ. BBA-Gen Subjects. 2011;1810:350–360. - PMC - PubMed

Publication types