Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 1;387(1):1-11.
doi: 10.1016/j.jcis.2012.07.047. Epub 2012 Jul 27.

Nanoparticles at fluid interfaces: exploiting capping ligands to control adsorption, stability and dynamics

Affiliations

Nanoparticles at fluid interfaces: exploiting capping ligands to control adsorption, stability and dynamics

Valeria Garbin et al. J Colloid Interface Sci. .

Abstract

Nanoparticle self-assembly at fluid-fluid interfaces has been traditionally exploited in emulsification, encapsulation and oil recovery, and more recently in emerging applications including functional nanomaterials and biphasic catalysis. We provide a review of the literature focusing on the open challenges that still hamper the broader applicability of this potentially transformative technology, and we outline strategies to achieve improved control over interfacial self-assembly of nanoparticles. First, we discuss means to promote spontaneous adsorption by tuning the interfacial energies of the nanoparticles with the fluids using capping ligands, and the occurrence of energy barriers. We then examine the interactions between interfacial nanoparticles and how they affect the formation of equilibrium interfacial suspensions versus non-equilibrium two-dimensional phases, such as weakly attractive glasses and gels. Important differences with colloidal interactions in a bulk suspension arise due to the discontinuity in solvent properties at the interface. For instance, ligand brushes rearrange in asymmetric configurations, and thus play a significant role in determining interparticle interactions. Finally, we briefly discuss the link between interfacial microstructure and the dynamic response of particle-laden interfaces, including interfacial rheology and the fate of nanoparticle monolayers upon out-of-plane deformation.

PubMed Disclaimer

LinkOut - more resources