Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2012 Dec;36(6):1421-34.
doi: 10.1002/jmri.23775. Epub 2012 Aug 21.

Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies

Affiliations
Multicenter Study

Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies

Diana Wald et al. J Magn Reson Imaging. 2012 Dec.

Abstract

Purpose: To develop an automated method with which to distinguish metabolically different adipose tissues in a large number of subjects using whole-body magnetic resonance imaging (MRI) datasets for improving the understanding of chronic disease risk predictions associated with distinct adipose tissue compartments.

Materials and methods: In all, 314 participants were scanned using a 1.5T MRI-scanner with a 2-point Dixon whole-body sequence. Image segmentation was automated using standard image processing techniques and knowledge-based methods. Abdominal adipose tissue was separated into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) by statistical shape models. Bone marrow was removed to provide a more accurate measurement of adipose tissue. To assess segmentation accuracy, ground-truth segmentations in 52 images were performed manually by one operator. Due to the high effort of manual delineation, manual segmentation was limited to seven slices per volume.

Results: Volumetric differences were 3.30 ± 2.97% and 6.22 ± 5.28% for SAT and VAT, respectively. The systematic error shows an overestimation of 4.22 ± 7.01% for VAT and 0.37 ± 4.45% for SAT. Coefficients-of-variation from repeated measurements were: 3.50 ± 2.93% for VAT and 0.35 ± 0.26% for SAT. The approach of removing bone marrow worked well in most body regions. Only occasionally the method failed for knees and/or shinbone, which resulted in an overestimation of SAT by 3.14 ± 1.45%.

Conclusion: We developed a fully automatic process to assess SAT and VAT in whole-body MRI data. The method can support epidemiological studies investigating the relationship between excess body fat and chronic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms