Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep:145:455-64.
doi: 10.1242/jeb.145.1.455.

The effect of zinc on calcium and hydrogen ion currents in intact snail neurones

Affiliations

The effect of zinc on calcium and hydrogen ion currents in intact snail neurones

M P Mahaut-Smith. J Exp Biol. 1989 Sep.

Abstract

The effects of external Zn(2+) on Ca(2+) and H+ currents in the soma of intact Helix neurones were investigated using standard two-electrode voltage-clamp procedures. Cells were exposed to a 0Na(+), tetraethylammonium (TEA(+)) saline and clamped with Cs(+)-filled electrodes, which allows separation of voltage-dependent H(+) and Ca(2+) currents using different holding potentials. Outward H(+) currents, activated by depolarizations from holding potentials in the range -15 to-10 mV, were rapidly blocked by low concentrations of external Zn(2+) with a K(d) of approximately 16/μmoll(-1). H(+) current activation was also markedly slowed and the block was slow to reverse. Ca(2+) currents, largely free from contamination by outward current, were activated by small depolarizations from a holding potential of -55 mV. Ca(2+) currents were reduced by Zn(2+), but the K(d) for block was more than 80 times greater than for block of H(+) currents. Thus, low concentrations of Zn(2+) provide a method of selectively inhibiting H(+) current in studies of Ca(2+) current. This was demonstrated in cells which slowly acidified following exposure to 0Na(+), TEA(+) saline, leading to an increased outward H(+) current. Washing with low concentrations of Zn(2+) blocked the H(+) current and uncovered the underlying Ca(2+) current. The results also suggest that Zn(2+) will be a useful tool in studies of the physiological role of the H(+) pathway.

PubMed Disclaimer

LinkOut - more resources