Staphylococcal response to oxidative stress
- PMID: 22919625
- PMCID: PMC3417528
- DOI: 10.3389/fcimb.2012.00033
Staphylococcal response to oxidative stress
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Keywords: Staphylococcus; oxidative stress.
Figures


Similar articles
-
Oxidative stress response in Pseudomonas putida.Appl Microbiol Biotechnol. 2014 Aug;98(16):6933-46. doi: 10.1007/s00253-014-5883-4. Epub 2014 Jun 24. Appl Microbiol Biotechnol. 2014. PMID: 24957251 Review.
-
The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response.Microbiol Spectr. 2016 Apr;4(2):10.1128/microbiolspec.VMBF-0022-2015. doi: 10.1128/microbiolspec.VMBF-0022-2015. Microbiol Spectr. 2016. PMID: 27227309 Free PMC article. Review.
-
Anaerobic Bacterial Response to Nitrosative Stress.Adv Microb Physiol. 2018;72:193-237. doi: 10.1016/bs.ampbs.2018.01.001. Epub 2018 Mar 15. Adv Microb Physiol. 2018. PMID: 29778215
-
Quorum-sensing systems in staphylococci as therapeutic targets.Anal Bioanal Chem. 2007 Jan;387(2):437-44. doi: 10.1007/s00216-006-0860-0. Epub 2006 Oct 28. Anal Bioanal Chem. 2007. PMID: 17072597 Review.
-
Redox biology of tuberculosis pathogenesis.Adv Microb Physiol. 2012;60:263-324. doi: 10.1016/B978-0-12-398264-3.00004-8. Adv Microb Physiol. 2012. PMID: 22633061 Review.
Cited by
-
eDNA-Mediated Cutaneous Protection Against UVB Damage Conferred by Staphylococcal Epidermal Colonization.Microorganisms. 2021 Apr 9;9(4):788. doi: 10.3390/microorganisms9040788. Microorganisms. 2021. PMID: 33918948 Free PMC article.
-
Staphylococcus aureus-A Known Opponent against Host Defense Mechanisms and Vaccine Development-Do We Still Have a Chance to Win?Int J Mol Sci. 2022 Jan 16;23(2):948. doi: 10.3390/ijms23020948. Int J Mol Sci. 2022. PMID: 35055134 Free PMC article. Review.
-
The Staphylococcus aureus SrrAB Regulatory System Modulates Hydrogen Peroxide Resistance Factors, Which Imparts Protection to Aconitase during Aerobic Growth.PLoS One. 2017 Jan 18;12(1):e0170283. doi: 10.1371/journal.pone.0170283. eCollection 2017. PLoS One. 2017. PMID: 28099473 Free PMC article.
-
Rapid Detection of Pathogenic Bacteria by the Naked Eye.Biosensors (Basel). 2021 Sep 6;11(9):317. doi: 10.3390/bios11090317. Biosensors (Basel). 2021. PMID: 34562907 Free PMC article.
-
Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes.PLoS Genet. 2020 Dec 30;16(12):e1009282. doi: 10.1371/journal.pgen.1009282. eCollection 2020 Dec. PLoS Genet. 2020. PMID: 33378356 Free PMC article.
References
-
- Aberg A., Hahne S., Karlsson M., Larsson A., Ormö M., Ahgren A., Sjöberg B. M. (1989). Evidence for two different classes of redox-active cysteines in ribonucleotide reductase of Escherichia coli. J. Biol. Chem. 264, 12249–12252 - PubMed
-
- Allard M., Moisan H., Brouillette E., Gervais A. L., Jacques M., Lacasse P., Diarra M. S., Malouin F. (2006). Transcriptional modulation of some Staphylococcus aureus iron-regulated genes during growth in vitro and in a tissue cage model in vivo. Microbes Infect. 8, 1679–1690 - PubMed
-
- Alonso J. C., Stiege A. C., Lüder G. (1993). Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Mol. Gen. Genet. 239, 129–136 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources