Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 26;134(38):16008-16.
doi: 10.1021/ja307344f. Epub 2012 Sep 13.

Contraction and expansion of the silicon scaffold of stable Si6R6 isomers

Affiliations

Contraction and expansion of the silicon scaffold of stable Si6R6 isomers

Kai Abersfelder et al. J Am Chem Soc. .

Abstract

The reactivity of two stable Si(6)R(6) clusters (4 and 5, R = 2,4,6-(i)Pr(3)C(6)H(2)) with unsymmetrical substitution patterns (including Si, SiR, and SiR(2) vertices) is reported. In order to account for the importance of such clusters as model systems for transient intermediates in the deposition of elemental silicon, we here propose the term "siliconoids" for silicon clusters with unsaturated valencies. With the hexasilaprismane 8a, a saturated-i.e., non-siliconoid-Si(6)R(6) isomer is accessible from a suitable Si(3) precursor. Thermal redistribution of the substituents converts 1,1,2-trichlorocyclotrisilane 6 into the corresponding 1,2,3-derivative 7 prior to the requisite reductive coupling step leading to 8a. On the other hand, a stable expanded Si(11)-siliconoid 9 was isolated as a minor side product of the thermal isomerization of 4 to 5, thus providing a first example of siliconoid cluster expansion in the condensed phase. In the solid-state structure, the two unsubstituted vertices of 9 strongly interact in a staggered propellane-like fashion. Oxidative cluster contraction of a siliconoid scaffold is observed upon treatment of siliconoid 5 with a large excess of iodine in refluxing toluene, thus providing access to a highly functionalized hexaiodocyclopentasilane 11 in high yield. Conversely, chlorination of the isomeric 4 with BiCl(3) as a mild source of Cl(2) results in a complex mixture of products from chlorination of the unsubstituted vertices as well as σ-bonds of the cluster framework of 4. The main product, 1,2-dichlorotricyclo[2.2.0.0(2,5)]hexasilane 12, undergoes thermal cluster contraction to give tricyclo[2.1.0.0(2,5)]pentasilane 14 with an exohedral chlorosilyl group.

PubMed Disclaimer

LinkOut - more resources