EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes
- PMID: 22923291
- PMCID: PMC3467752
- DOI: 10.1093/bioinformatics/bts510
EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes
Abstract
High-quality enzyme function annotation is essential for understanding the biochemistry, metabolism and disease processes of organisms. Previously, we developed a multi-component high-precision enzyme function predictor, EFICAz(2) (enzyme function inference by a combined approach). Here, we present an updated improved version, EFICAz(2.5), that is trained on a significantly larger data set of enzyme sequences and PROSITE patterns. We also present the results of the application of EFICAz(2.5) to the enzyme reannotation of 396 genomes cataloged in the ENSEMBL database.
Availability: The EFICAz(2.5) server and database is freely available with a use-friendly interface at http://cssb.biology.gatech.edu/EFICAz2.5.
Similar articles
-
EFICAz2: enzyme function inference by a combined approach enhanced by machine learning.BMC Bioinformatics. 2009 Apr 13;10:107. doi: 10.1186/1471-2105-10-107. BMC Bioinformatics. 2009. PMID: 19361344 Free PMC article.
-
High precision multi-genome scale reannotation of enzyme function by EFICAz.BMC Genomics. 2006 Dec 13;7:315. doi: 10.1186/1471-2164-7-315. BMC Genomics. 2006. PMID: 17166279 Free PMC article.
-
EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference.Nucleic Acids Res. 2004 Dec 1;32(21):6226-39. doi: 10.1093/nar/gkh956. Print 2004. Nucleic Acids Res. 2004. PMID: 15576349 Free PMC article.
-
Review of QSAR models for enzyme classes of drug targets: Theoretical background and applications in parasites, hosts, and other organisms.Curr Pharm Des. 2010;16(24):2710-23. doi: 10.2174/138161210792389207. Curr Pharm Des. 2010. PMID: 20642430 Review.
-
Puzzling over orphan enzymes.Cell Mol Life Sci. 2006 Mar;63(5):517-23. doi: 10.1007/s00018-005-5520-6. Cell Mol Life Sci. 2006. PMID: 16465439 Free PMC article. Review.
Cited by
-
Accurately predicting enzyme functions through geometric graph learning on ESMFold-predicted structures.Nat Commun. 2024 Sep 18;15(1):8180. doi: 10.1038/s41467-024-52533-w. Nat Commun. 2024. PMID: 39294165 Free PMC article.
-
PPVED: A machine learning tool for predicting the effect of single amino acid substitution on protein function in plants.Plant Biotechnol J. 2022 Jul;20(7):1417-1431. doi: 10.1111/pbi.13823. Epub 2022 Apr 27. Plant Biotechnol J. 2022. PMID: 35398963 Free PMC article.
-
Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism.Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9740-E9749. doi: 10.1073/pnas.1713050114. Epub 2017 Oct 24. Proc Natl Acad Sci U S A. 2017. PMID: 29078384 Free PMC article.
-
SProtFP: a machine learning-based method for functional classification of small ORFs in prokaryotes.NAR Genom Bioinform. 2025 Jan 7;7(1):lqae186. doi: 10.1093/nargab/lqae186. eCollection 2025 Mar. NAR Genom Bioinform. 2025. PMID: 39781515 Free PMC article.
-
EnzyMine: a comprehensive database for enzyme function annotation with enzymatic reaction chemical feature.Database (Oxford). 2020 Oct 1;2023:baaa065. doi: 10.1093/database/baaa065. Online ahead of print. Database (Oxford). 2020. PMID: 33002112 Free PMC article.
References
-
- Friedberg I. Automated protein function prediction—the genomic challenge. Brief. Bioinform. 2006;7:225–242. - PubMed