Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;23(12):1185-98.
doi: 10.1016/0021-9290(90)90376-e.

An optimal control model for maximum-height human jumping

Affiliations
Free article

An optimal control model for maximum-height human jumping

M G Pandy et al. J Biomech. 1990.
Free article

Abstract

To understand how intermuscular control, inertial interactions among body segments, and musculotendon dynamics coordinate human movement, we have chosen to study maximum-height jumping. Because this activity presents a relatively unambiguous performance criterion, it fits well into the framework of optimal control theory. The human body is modeled as a four-segment, planar, articulated linkage, with adjacent links joined together by frictionless revolutes. Driving the skeletal system are eight musculotendon actuators, each muscle modeled as a three-element, lumped-parameter entity, in series with tendon. Tendon is assumed to be elastic, and its properties are defined by a stress-strain curve. The mechanical behavior of muscle is described by a Hill-type contractile element, including both series and parallel elasticity. Driving the musculotendon model is a first-order representation of excitation-contraction (activation) dynamics. The optimal control problem is to maximize the height reached by the center of mass of the body subject to body-segmental, musculotendon, and activation dynamics, a zero vertical ground reaction force at lift-off, and constraints which limit the magnitude of the incoming neural control signals to lie between zero (no excitation) and one (full excitation). A computational solution to this problem was found on the basis of a Mayne-Polak dynamic optimization algorithm. Qualitative comparisons between the predictions of the model and previously reported experimental findings indicate that the model reproduces the major features of a maximum-height squat jump (i.e. limb-segmental angular displacements, vertical and horizontal ground reaction forces, sequence of muscular activity, overall jump height, and final lift-off time).

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources