Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(8):e40984.
doi: 10.1371/journal.pone.0040984. Epub 2012 Aug 22.

The effectiveness of U.S. public health surveillance systems for situational awareness during the 2009 H1N1 pandemic: a retrospective analysis

Affiliations

The effectiveness of U.S. public health surveillance systems for situational awareness during the 2009 H1N1 pandemic: a retrospective analysis

Michael A Stoto. PLoS One. 2012.

Abstract

Background: The 2009 H1N1 outbreak provides an opportunity to learn about the strengths and weaknesses of current U.S. public health surveillance systems and to identify implications for measuring public health emergency preparedness.

Methodology/principal findings: We adopted a "triangulation" approach in which multiple contemporary data sources, each with different expected biases, are compared to identify time patterns that are likely to reflect biases versus those that are more likely to be indicative of actual infection rates. This approach is grounded in the understanding that surveillance data are the result of a series of decisions made by patients, health care providers, and public health professionals about seeking and providing health care and about reporting cases to health authorities. Although limited by the lack of a gold standard, this analysis suggests that children and young adults are over-represented in many pH1N1 surveillance systems, especially in the spring wave. In addition, the nearly two-month delay between the Northeast and the South in the Fall peak in some surveillance data seems to at least partially reflect regional differences in concerns about pH1N1 rather than real differences in pH1N1 infection rates.

Conclusions/significance: Although the extent of the biases suggested by this analysis cannot be known precisely, the analysis identifies underlying problems with surveillance systems--in particular their dependence on patient and provider behavior, which is influenced by a changing information environment--that could limit situational awareness in future public health emergencies. To improve situational awareness in future health emergencies, population-based surveillance systems such as telephone surveys of representative population samples and seroprevalence surveys in well-defined population cohorts are needed.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The author has declared that no competing interests exist.

Figures

Figure 1
Figure 1. Google “Swine Flu” indices for the Northeast, South and entire United States Panel A.
Google Insights “Swine Flu” activity and news indices, U.S., April 12, 2009–January 2, 2010. Panel B. Google Insights “Swine Flu” activity index, U.S., Georgia (GA), and Massachusetts (MA), August 2, 2009–January 2, 2010. Source: Google Insights search for “swine flu” at http://www.google.com/insights/search/#q=SWINE%20FLU&geo=US&date=1%2F2009%2012m&cmpt=q.
Figure 2
Figure 2. pH1N1 infection, hospitalization, and death rates.
Panel A. Aggregate hospitalization and death reporting activity (AHDRA) hospitalization and death rates per 100,000 population by age group, laboratory-confirmed pH1N1 influenza infection—United States, August 2009–February 2010. Source: Jhung, 2011. Panel B, C & D. 2009 H1N1-Related Deaths, Hospitalizations and Cases, U.S. April 2009–January 16, 2010. Author's calculations based on CDC EIP program estimates: Updated CDC estimates of 2009 H1N1 influenza cases, hospitalizations and deaths in the United States, April 2009–April 10, 2010 Available from: http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm.
Figure 3
Figure 3. Influenza-related emergency department visits and hospitalizations.
Panel A. Rate of ILI syndrome visits (based on chief complaint) to New York City emergency departments by age group, April 1, 2009–July 6, 2009. Panel B. Laboratory-confirmed H1N1 hospital admissions and emergency department (ED) Visits for ILI in New York City, April 1, 2009–July 6, 2009. Source: New York City Department of Health and Mental Hygiene Health Alert #27: Pandemic (H1N1) 2009 influenza update, revised reporting requirements and testing procedures Available from: http://www.nyc.gov/html/doh/downloads/pdf/cd/2009/09md27.pdf.
Figure 4
Figure 4. Outpatient influenza-like illness surveillance.
Percentage of visits for ILI Reported by the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet), National Summary 2008–09 and Previous Two Seasons. Source: CDC Flu View, 2008–2009 Influenza Season Week 25 ending June 27, 2009. Available from: http://www.cdc.gov/flu/weekly/weeklyarchives2008-2009/weekly25.htm.
Figure 5
Figure 5. Laboratory-confirmed influenza cases reported to CDC by U.S.
WHO/NREVSS collaborating laboratories, national summary, 2008–09. Source: CDC Flu View, 2008–2009 Influenza Season Week 25 ending June 27, 2009. Available from: http://www.cdc.gov/flu/weekly/weeklyarchives2008-2009/weekly25.htm.
Figure 6
Figure 6. Influenza-like illness surveillance for the Northeast, South and entire United States.
Panel A. Percentage of visits for influenza-like illness (ILINet), U.S. and South, July 31, 2009–January 8, 2010; Google Flu Trends index, U.S. and Georgia (GA), August 2, 2009–January 10, 2010; scaled DiSTRIBuTE ILI trends, Georgia (GA), October 3, 2009–January 9, 2010. Panel B. Percentage of visits for influenza-like illness (ILINet), U.S. and Northeast (NE), July 31, 2009–January 8, 2010; Google Flu Trends index, U.S. and Massachusetts (MA), August 2, 2009–January 10, 2010; scaled DiSTRIBuTE ILI trends, Massachusetts (MA), October 3, 2009–January 9, 2010. Sources: author's calculations based on CDC, Google, and DiSTRIBuTE data available from: http://www.cdc.gov/h1n1flu/cdcresponse.htm, http://www.google.org/flutrends/, and http://isdsdistribute.org/moreinfo.php.

Similar articles

Cited by

References

    1. World Health Organization (WHO): Pandemic (H1N1) 2009 - update 103. Available: http://www.who.int/csr/don/2010_06_04/en/index.html via the Internet. Accessed: 22 November 2011.
    1. Brammer L, Blanton L, Epperson S, Mustaquim D, Bishop A, et al. (2011) Surveillance for influenza during the 2009 influenza A (H1N1) pandemic-United States, April 2009–March 2010. Clin Infect Dis 52 (Suppl 1)S27–35. - PubMed
    1. President's Council of Advisors on Science and Technology (PCAST): Report to the President on U.S. preparation for 2009-H1N1 influenza. Available: http://www.whitehouse.gov/assets/documents/PCAST_H1N1_Report.pdf via the Internet. Accessed: 22 November 2011.
    1. Jhung MA, Swerdlow D, Olsen SJ, Jernigan D, Biggerstaff M, et al. (2011) Epidemiology of 2009 pandemic influenza A (H1N1) in the United States. Clin Infect Dis 52 (Suppl 1)S13–S26. - PubMed
    1. Swerdlow DL, Finelli L, Bridges CB (2011) 2009 H1N1 influenza pandemic: field and epidemiologic investigations in the United States at the start of the first pandemic of the 21st century. Clin Infect Dis 52 (Suppl 1)S1–S3. - PubMed

Publication types

MeSH terms