Graphene: an emerging electronic material
- PMID: 22930422
- PMCID: PMC11524146
- DOI: 10.1002/adma.201201482
Graphene: an emerging electronic material
Abstract
Graphene, a single layer of carbon atoms in a honeycomb lattice, offers a number of fundamentally superior qualities that make it a promising material for a wide range of applications, particularly in electronic devices. Its unique form factor and exceptional physical properties have the potential to enable an entirely new generation of technologies beyond the limits of conventional materials. The extraordinarily high carrier mobility and saturation velocity can enable a fast switching speed for radio-frequency analog circuits. Unadulterated graphene is a semi-metal, incapable of a true off-state, which typically precludes its applications in digital logic electronics without bandgap engineering. The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies. Many challenges remain before this relatively new material becomes commercially viable, but laboratory prototypes have already shown the numerous advantages and novel functionality that graphene provides.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures



















Similar articles
-
Synthesis of monolithic graphene-graphite integrated electronics.Nat Mater. 2011 Nov 20;11(2):120-5. doi: 10.1038/nmat3169. Nat Mater. 2011. PMID: 22101813 Free PMC article.
-
Stretchable graphene transistors with printed dielectrics and gate electrodes.Nano Lett. 2011 Nov 9;11(11):4642-6. doi: 10.1021/nl202134z. Epub 2011 Oct 11. Nano Lett. 2011. PMID: 21973013
-
State-of-the-art graphene high-frequency electronics.Nano Lett. 2012 Jun 13;12(6):3062-7. doi: 10.1021/nl300904k. Epub 2012 May 14. Nano Lett. 2012. PMID: 22563820
-
Graphene barristors for de novo optoelectronics.Chem Commun (Camb). 2023 Jan 24;59(8):974-988. doi: 10.1039/d2cc05886c. Chem Commun (Camb). 2023. PMID: 36607612 Review.
-
3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.Biosens Bioelectron. 2017 Mar 15;89(Pt 1):187-200. doi: 10.1016/j.bios.2016.03.045. Epub 2016 Mar 19. Biosens Bioelectron. 2017. PMID: 27020065 Review.
Cited by
-
Topological Impact of Delocalization on the Stability and Band Gap of Partially Oxidized Graphene.ACS Omega. 2023 Jan 26;8(5):5124-5135. doi: 10.1021/acsomega.2c08169. eCollection 2023 Feb 7. ACS Omega. 2023. PMID: 36777597 Free PMC article.
-
Graphene-Based Sensors for Human Health Monitoring.Front Chem. 2019 Jun 11;7:399. doi: 10.3389/fchem.2019.00399. eCollection 2019. Front Chem. 2019. PMID: 31245352 Free PMC article. Review.
-
A Flexible Temperature Sensor for Noncontact Human-Machine Interaction.Materials (Basel). 2021 Nov 23;14(23):7112. doi: 10.3390/ma14237112. Materials (Basel). 2021. PMID: 34885268 Free PMC article.
-
Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology.Light Sci Appl. 2021 Apr 14;10(1):78. doi: 10.1038/s41377-021-00520-x. Light Sci Appl. 2021. PMID: 33854031 Free PMC article. Review.
-
Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects.Mater Today Chem. 2020 Dec;18:100385. doi: 10.1016/j.mtchem.2020.100385. Epub 2020 Oct 21. Mater Today Chem. 2020. PMID: 33106780 Free PMC article. Review.
References
-
- Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science. 2004;306:666. - PubMed
-
- Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A. Nature. 2005;438:197. - PubMed
-
- Geim AK, Novoselov KS. Nat Mater. 2007;6:183. - PubMed
-
- Geim AK. Science. 2009;324:1530. - PubMed
-
- Moore GE. Electronics. 1965;38:114.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources