Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids
- PMID: 22932955
- DOI: 10.1007/s10544-012-9694-z
Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids
Abstract
One major motivation for microfluidic research is to develop point of care diagnostic tools, which often demands a solution for chip-scale pumping that is of low cost, small size and light weight. Electrokinetics has been extensively studied for disposable pumping since only electrodes are needed to induce microflows. However, it encounters difficulties with conductive biofluids because of the associated high salt content. In electrokinetic pumps, electrodes are in direct contact with fluid, so high salt content will compress the electric double layer that is essential to electroosmostic flows. Alternating current electrothermal (ACET) effect is the only electrokinetic method found viable for biofluid actuation. While high frequency (>10 kHz) operation can suppress electrochemical reactions, electrical potential that could be applied over biofluids is still limited within several volts due to risk of electrolysis or impedance mismatch. Since ACET flow velocity has a quartic dependence on the voltage, ACET flows would be rather slow if electric field alone is used for actuation. This work studies the effect of a thermal bias on enhancing AC electrokinetic pumping. With proper imposition of external thermal gradients, significant improvement in flow velocity has been demonstrated by numerical simulation and preliminary experiments. Both showed that with 4 V(rms) at 100 kHz, flow velocity increased from ~10 μm/s when there was no thermal biasing to ~112 μm/s when a heat flux was applied.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous