The importance of modeling epileptic seizure dynamics as spatio-temporal patterns
- PMID: 22934035
- PMCID: PMC3429055
- DOI: 10.3389/fphys.2012.00281
The importance of modeling epileptic seizure dynamics as spatio-temporal patterns
Abstract
The occurrence of seizures is the common feature across the spectrum of epileptic disorders. We describe how the use of mechanistic neural population models leads to novel insight into the dynamic mechanisms underlying two important types of epileptic seizures. We specifically stress the need for a spatio-temporal description of the rhythms to deal with the complexity of the pathophenotype. Adapted to functional and structural patient data, the macroscopic models may allow a patient-specific description of seizures and prediction of treatment outcome.
Keywords: computational modeling; electroencephalogram (EEG); epilepsy; heterogeneity; spatio-temporal patterns.
Figures
References
-
- Bai X. X., Vestal M., Berman R., Negishi M., Spann M., Vega C., Desalvo M., Novotny E. J., Constable R. T., Blumenfeld H. (2010). Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J. Neurosci. 30, 5884–5893 10.1523/JNEUROSCI.5101-09.2010 - DOI - PMC - PubMed
-
- Blume W. T., Young G. B., Lemieux J. F. (1984). EEG morphology of partial epileptic seizures. Electroencephalogr. Clin. Neurophysiol. 57, 295–302 - PubMed
-
- Bojak I., Oostendorp T. F., Reid A. T., Kötter R. (2011). Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos. Transact. A Math. Phys. Eng. Sci. 369, 3785–3801 10.1098/rsta.2011.0080 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
