Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov;33(33):8430-41.
doi: 10.1016/j.biomaterials.2012.08.040. Epub 2012 Aug 30.

An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids

Affiliations

An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids

Takahisa Anada et al. Biomaterials. 2012 Nov.

Abstract

Since oxygen is one of the critical limiting factors for maintaining cell viability and function, a great deal of effort is being focused on improving the oxygen supply to three-dimensional (3D) cellular constructs. Here, we report a technique to construct spheroids utilizing 3D culture chips with a rapid and simple method for the replication of the surface structures of a polydimethylsiloxane (PDMS) mold. The resultant spheroid culture chip made it possible to rapidly yield high numbers of the spheroids at a time as well as to obtain uniform spheroids with a narrow size distribution and to collect the spheroids easily and noninvasively. The most important feature of this spheroid culture chip is that it enables direct oxygen supply to the cells because the chip is made with only gas-permeable PDMS. When human hepatoma HepG2 cells were grown on the oxygen-permeable chips as a model for liver cells, the cellular growth was remarkably enhanced, and the anaerobic glycolysis was significantly reduced compared to the non-oxygen-permeable chips. Furthermore, the oxygen-permeable chip improved the albumin secretion rates compared to the conventional spheroid culture system after 10 days. Histochemical and immunohistochemical analyses demonstrated that the oxygen-permeable chip dramatically prevented hypoxia in the core of the spheroids and subsequent central necrosis. Surprisingly, the diameters of approximately 400 and 600 μm were estimated to be the threshold of the hypoxic and survival size, respectively, for the HepG2 spheroids in the oxygenated chip. These results indicate that this chip is useful for engineering 3D cellular constructs with high viability and functionality for tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources