Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan;172(1):204-11.
doi: 10.1128/jb.172.1.204-211.1990.

Conservation of a dual-start motif in P22 lysis gene regulation

Affiliations

Conservation of a dual-start motif in P22 lysis gene regulation

K Nam et al. J Bacteriol. 1990 Jan.

Abstract

Gene 13 of bacteriophage P22 is functionally equivalent to lambda lysis gene S. Gene S codes for two products, the polypeptides S105 and S107, produced from translational initiation events at the third and first codon, respectively. We have shown that the two polypeptides have opposing functions in lysis: S105 is the lethal lysis effector, and S107 acts as an inhibitor of lysis (U. Bläsi, K. Nam, D. Hartz, L. Gold, and R. Young, EMBO J. 11:3501-3510, 1989). Gene 13 has a 108-codon reading frame and its product begins with a similar motif: Met-1-Lys-2-Lys-3-Met-4. Here, we present in vivo and in vitro evidence for the expression of a 13(108) and a 13(105) product and show that the lambda lysis control mechanisms is evolutionarily conserved in phage P22. In this case 13(108), like S107 in lambda, functions as the inhibitor of the lysis effector 13(105). Although the DNA sequences upstream of the S and 13 gene starts showed less homology, the same structural characteristics, i.e., stem-loop structures immediately upstream and about 10 codons downstream of the start region, were present in both reading frames. Using in vitro mutagenesis and toeprinting, we show that the upstream stem-loop structures of genes 13 and S, containing the Shine-Dalgarno sequence for initiations at Met-1, are interchangeable. Moreover, our data indicate that the stability of the secondary structures present in the translational initiation regions of genes S and 13 is set to create a particular ratio of initiation events at Met-1 and Met-3 or Met-4. The ratio of effector to inhibitor was much higher in P22 than in lambda. We propose that this reflects less transcriptional readthrough at the late terminator t(R) and suggests that the dual-start motif in genes 13 and S may be important for establishment of maintenance of the lysogenic state.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bacteriol. 1982 Sep;151(3):1403-10 - PubMed
    1. Virology. 1985 May;143(1):280-9 - PubMed
    1. J Virol. 1985 Dec;56(3):1030-3 - PubMed
    1. J Mol Biol. 1986 Feb 5;187(3):399-416 - PubMed
    1. J Bacteriol. 1986 Sep;167(3):1035-42 - PubMed

Publication types

LinkOut - more resources