Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct 23;24(40):5408-27.
doi: 10.1002/adma.201201630. Epub 2012 Aug 1.

Transition metal oxides for organic electronics: energetics, device physics and applications

Affiliations
Review

Transition metal oxides for organic electronics: energetics, device physics and applications

Jens Meyer et al. Adv Mater. .

Abstract

During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO(3) ), vanadium pent-oxide (V(2) O(5) ) or tungsten tri-oxide (WO(3) ) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources