Spatial distribution of radiation damage to crystalline proteins at 25-300 K
- PMID: 22948911
- PMCID: PMC3489100
- DOI: 10.1107/S0907444912021361
Spatial distribution of radiation damage to crystalline proteins at 25-300 K
Abstract
The spatial distribution of radiation damage (assayed by increases in atomic B factors) to thaumatin and urease crystals at temperatures ranging from 25 to 300 K is reported. The nature of the damage changes dramatically at approximately 180 K. Above this temperature the role of solvent diffusion is apparent in thaumatin crystals, as solvent-exposed turns and loops are especially sensitive. In urease, a flap covering the active site is the most sensitive part of the molecule and nearby loops show enhanced sensitivity. Below 180 K sensitivity is correlated with poor local packing, especially in thaumatin. At all temperatures, the component of the damage that is spatially uniform within the unit cell accounts for more than half of the total increase in the atomic B factors and correlates with changes in mosaicity. This component may arise from lattice-level, rather than local, disorder. The effects of primary structure on radiation sensitivity are small compared with those of tertiary structure, local packing, solvent accessibility and crystal contacts.
Figures








Similar articles
-
Solvent flows, conformation changes and lattice reordering in a cold protein crystal.Acta Crystallogr D Struct Biol. 2019 Nov 1;75(Pt 11):980-994. doi: 10.1107/S2059798319013822. Epub 2019 Oct 31. Acta Crystallogr D Struct Biol. 2019. PMID: 31692472 Free PMC article.
-
Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.Acta Crystallogr D Biol Crystallogr. 2010 Oct;66(Pt 10):1092-100. doi: 10.1107/S0907444910035523. Epub 2010 Sep 18. Acta Crystallogr D Biol Crystallogr. 2010. PMID: 20944242 Free PMC article.
-
Chemical cross-linking and mass spectrometric identification of sites of interaction for UreD, UreF, and urease.J Biol Chem. 2004 Apr 9;279(15):15305-13. doi: 10.1074/jbc.M312979200. Epub 2004 Jan 28. J Biol Chem. 2004. PMID: 14749331
-
Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease gamma subunit.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Jul 1;66(Pt 7):781-6. doi: 10.1107/S1744309110019536. Epub 2010 Jun 23. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010. PMID: 20606272 Free PMC article.
-
The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate.J Biol Inorg Chem. 2020 Sep;25(6):829-845. doi: 10.1007/s00775-020-01808-w. Epub 2020 Aug 18. J Biol Inorg Chem. 2020. PMID: 32809087 Free PMC article. Review.
Cited by
-
Global radiation damage: temperature dependence, time dependence and how to outrun it.J Synchrotron Radiat. 2013 Jan;20(Pt 1):7-13. doi: 10.1107/S0909049512048303. Epub 2012 Nov 29. J Synchrotron Radiat. 2013. PMID: 23254651 Free PMC article.
-
Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals.Acta Crystallogr D Struct Biol. 2022 Aug 1;78(Pt 8):945-963. doi: 10.1107/S2059798322005939. Epub 2022 Jul 14. Acta Crystallogr D Struct Biol. 2022. PMID: 35916220 Free PMC article.
-
Solvent flows, conformation changes and lattice reordering in a cold protein crystal.Acta Crystallogr D Struct Biol. 2019 Nov 1;75(Pt 11):980-994. doi: 10.1107/S2059798319013822. Epub 2019 Oct 31. Acta Crystallogr D Struct Biol. 2019. PMID: 31692472 Free PMC article.
-
Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography.Acta Crystallogr D Struct Biol. 2019 Feb 1;75(Pt 2):123-137. doi: 10.1107/S2059798318017941. Epub 2019 Jan 28. Acta Crystallogr D Struct Biol. 2019. PMID: 30821702 Free PMC article.
-
Identification of patterns in diffraction intensities affected by radiation exposure.J Synchrotron Radiat. 2013 Jan;20(Pt 1):37-48. doi: 10.1107/S0909049512048807. Epub 2012 Dec 6. J Synchrotron Radiat. 2013. PMID: 23254654 Free PMC article.
References
-
- Adams, P. D. et al. (2011). Methods, 55, 94–106. - PubMed
-
- Alphey, M. S., Gabrielsen, M., Micossi, E., Leonard, G. A., McSweeney, S. M., Ravelli, R. B., Tetaud, E., Fairlamb, A. H., Bond, C. S. & Hunter, W. N. (2003). J. Biol. Chem. 278, 25919–25925. - PubMed
-
- Audette, M., Chen, X., Houée-Levin, C., Potier, M. & Le Maire, M. (2000). Int. J. Radiat. Biol. 76, 673–681. - PubMed
-
- Barker, A. I., Southworth-Davies, R. J., Paithankar, K. S., Carmichael, I. & Garman, E. F. (2009). J. Synchrotron Rad. 16, 205–216. - PubMed
-
- Benkovic, S. J. & Hammes-Schiffer, S. (2006). Science, 312, 208–209. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources