Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct 3;134(39):16387-400.
doi: 10.1021/ja307087d. Epub 2012 Sep 20.

Mixed copper, silver, and gold cyanides, (M(x)M'(1-x))CN: tailoring chain structures to influence physical properties

Affiliations

Mixed copper, silver, and gold cyanides, (M(x)M'(1-x))CN: tailoring chain structures to influence physical properties

Ann M Chippindale et al. J Am Chem Soc. .

Abstract

Binary mixed-metal variants of the one-dimensional MCN compounds (M = Cu, Ag, and Au) have been prepared and characterized using powder X-ray diffraction, vibrational spectroscopy, and total neutron diffraction. A solid solution with the AgCN structure exists in the (Cu(x)Ag(1-x))CN system over the range (0 ≤ x ≤ 1). Line phases with compositions (Cu(1/2)Au(1/2))CN, (Cu(7/12)Au(5/12))CN, (Cu(2/3)Au(1/3))CN, and (Ag(1/2)Au(1/2))CN, all of which have the AuCN structure, are found in the gold-containing systems. Infrared and Raman spectroscopies show that complete ordering of the type [M-C≡N-M'-N≡C-](n) occurs only in (Cu(1/2)Au(1/2))CN and (Ag(1/2)Au(1/2))CN. The sense of the cyanide bonding was determined by total neutron diffraction to be [Ag-NC-Au-CN-](n) in (Ag(1/2)Au(1/2))CN and [Cu-NC-Au-CN-](n) in (Cu(1/2)Au(1/2))CN. In contrast, in (Cu(0.50)Ag(0.50))CN, metal ordering is incomplete, and strict alternation of metals does not occur. However, there is a distinct preference (85%) for the N end of the cyanide ligand to be bonded to copper and for Ag-CN-Cu links to predominate. Contrary to expectation, aurophilic bonding does not appear to be the controlling factor which leads to (Cu(1/2)Au(1/2))CN and (Ag(1/2)Au(1/2))CN adopting the AuCN structure. The diffuse reflectance, photoluminescence, and 1-D negative thermal expansion (NTE) behaviors of all three systems are reported and compared with those of the parent cyanide compounds. The photophysical properties are strongly influenced both by the composition of the individual chains and by how such chains pack together. The NTE behavior is also controlled by structure type: the gold-containing mixed-metal cyanides with the AuCN structure show the smallest contraction along the chain length on heating.

PubMed Disclaimer

LinkOut - more resources